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1.0 INTRODUCTION

EPA’s Office of Solid Waste (OSW) is developing the Guide for Industrial Waste Management
to facilitate evaluation of non-hazardous industrial waste (U.S. EPA, 1999).  This document
describes one aspect of the guidance, the technical basis for a ground-water model designed to
determine if waste management unit (WMU) designs are protective of ground-water resources.  
The degree of ground-water protection provided by a particular design is determined by modeling
the migration of waste constituents from the WMU through underlying soil to a monitoring point
in an aquifer.  The methodology and the assumptions used to perform the ground-water modeling
and the application of the results of the modeling are described in this document.

This model incorporates two levels, or tiers, of analysis to provide facility managers, the public,
and state regulators flexibility in assessing the protectiveness of particular WMU designs.  The
first level of analysis, Tier 1, is based on a conservative Monte Carlo probabilistic analysis that
accounts for the nationwide variability of ground-water modeling parameters.  Tier 1 requires
minimal data about the facility and provides an analysis of the extent to which a WMU design or
waste concentration for land application units protects ground water.  The second level, Tier 2,
allows users to change a subset of the facility-specific ground-water modeling parameters that
may be known with greater certainty at a specific location.  The Tier 2 analysis is based on a
predictive neural network tool that incorporates the sophistication of a probabilistic ground-water
modeling analysis yet requires a minimal amount of site data.  

The unique aspect of the two-tiered approach developed by the Agency is that it provides two
levels of analysis that require a minimum of data and provide instantaneous analysis and
recommendations for the type of liner that should be used in a WMU and/or whether land
application is appropriate. Both analyses are combined into a user-friendly Windows-based
software tool, the Industrial Waste Evaluation Model (IWEM) that will operate on any standard,
MS Windows™ -based PC platform.

It should be noted here that the guidance also recommends detailed site-specific Tier 3 analysis in
situations when a more thorough evaluation of site conditions is needed.  This approach applies
appropriate ground-water models and a full array of detailed site climatologic and hydrogeologic
data.  However, the Tier 3 analyses are beyond the scope of this background document and
further information regarding their application to selecting appropriate liner designs for industrial
solid waste management unit designs is described in the main Guidance (U.S. EPA, 1999).
 
The development of this two-tiered approach is described in detail in this document.  The
remainder of this section summarizes the objectives of the two-tiered approach and contains a list
of the limitations, caveats, and disclaimers associated with the two-tiered approach used to
evaluate Industrial WMU designs.
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1.1 Objectives of this Document

The objectives of this document are to describe in detail the methodology and assumptions used
to develop the two-tiered approach to evaluating WMU designs.  Knowledge of the methodology
and assumptions used to develop the two-tiered approach will allow the user, decision makers,
and other stakeholders to determine if the approach is appropriate for the evaluation of specific
WMU designs at specific sites.

This background document contains a summary of the overall modeling strategy used, a
description of the models, the method used to calculate Tier 1 and Tier 2 leachate concentration
threshold values (LCTVs), and a summary of how to apply the model results for Tier 1 and Tier 2
to the evaluation of WMU  designs and waste concentrations for land application.

1.2 Relation to Other Documents

As stated above, this document describes the ground-water modeling methodology used to
determine the protectiveness of a WMU design.  Other aspects of the guidance, such as air
emissions modeling and ground-water monitoring are described elsewhere in the main Guidance
(U.S. EPA, 1999).

1.3 Limitations, Caveats and Disclaimers

The two-tiered approach developed to evaluate WMU designs uses the latest available peer-
reviewed ground-water modeling methodology incorporating state-of-the-art probabilistic
techniques to account for the uncertainty.  However, given the complex nature of the evaluations,
a number of limitations and caveats must be delineated.  These are described in this section.

To perform the evaluations recommended by the Guide for Industrial Waste Management
(Guidance) (U.S. EPA, 1999), mathematical models are used.  These models are based on a
number of simplifying assumptions to represent conditions that may potentially be encountered at
waste management sites within the U.S.  Efforts have been made to obtain representative
nationwide data and account for the uncertainty in the data.  However, as with all modeling
evaluations, these simplifying assumptions potentially might not apply or may be inappropriate for
evaluating a specific WMU design at a specific site with a unique combination of conditions that
might not be accounted for with the available data.  Therefore, where appropriate, EPA used
conservative estimates of parameter values to ensure ground-water protection. 

The two-tiered approach described in this document is designed to be used as guidance in the
selection of an appropriate WMU design or land application of waste.  Given the number of
variables involved and the uncertainty of hydrogeologic characteristics of a specific site, the
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application of this guidance is not intended to provide a guarantee that a specific design will be
appropriate and protective.  The fate and transport model upon which this analysis is based uses a
national database.  Evaluations using parameter values at the extremes of the distribution may
have significant error associated with them.

The user, decision makers, and other stakeholders who are evaluating the results of a two-tiered
analysis need to ensure that there is sufficiently documented and verifiable justification of site
parameter values and any potential uncertainty or data gaps that may exist.  This is especially true
with respect to highly sensitive modeling parameters such as infiltration rate, WMU area, sorption
and hydrolysis rates,  and the distance to a ground-water monitoring well.  Additional information
about the uncertainty involved in the modeling and two-tiered approach is provided in Section 5.4
of this document.

The two-tiered approach presented in this document was developed by EPA in consultation with
state regulatory agencies, representatives from industries, and environmental stakeholders.  EPA
has provided this guidance as a tool for states, industry, the public, and environmental groups,
who may all have a role in making decisions regarding appropriateness of WMU designs.
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2.0 OVERALL MODELING STRATEGY

This section describes the overall ground-water modeling strategy used to develop the two-tiered
evaluations of WMU designs (Section 2.1).  Section 2.2 presents a summary of the Monte Carlo
analysis used in the ground-water modeling.  Section 2.3 provides a summary of neural networks. 
The technical basis for the Tier 1 and Tier 2 approaches are described in sections 2.4 and 2.5.

2.1 Ground-Water Modeling Strategy

The development of a ground-water modeling strategy to evaluate WMU liner designs requires
the development of a conceptual model to visualize what is being modeled.  This conceptual
model is used to select an appropriate ground-water fate-and-transport model and to outline
underlying assumptions that will be used in the model.  The following subsections describe the
conceptual model and the three liner designs that will be considered in the two-tiered approach.

2.1.1  Conceptual Model

The approach used to evaluate the ground-water fate and transport component of contaminant
releases from WMUs is illustrated by the conceptual model in Figure 2-1.  Infiltration through the
waste in the WMU depends on the climate characteristics (e.g., precipitation and
evapotranspiration) and the WMU design (e.g., cover, liner, liquid or solid waste).  Precipitation
that percolates through the waste unit will generate leachate, which can infiltrate from the bottom
of the WMU through the unsaturated zone and into the saturated zone and then downgradient to
a ground-water receptor well that could be used to monitor unit performance or for drinking
water.  For purposes of the Guidance, the well is considered a monitoring well.  The fate and
transport modeling computes the concentration of contaminants in this well, which is known as
the ground-water or monitoring well.

The predicted contaminant concentration in the ground-water well is compared to a toxicity
reference level; either maximum contaminant level (MCL) a health-based number (HBN).  If the
monitoring concentration of a contaminant is less than the toxicity reference level, a WMU design
is considered to be protective of ground water.
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Figure 2-1   Schematic Diagram of Ground-Water Modeling Scenario

The objective of the ground-water modeling performed for this guidance is to compute the
amount of dilution and attenuation a contaminant may undergo as it migrates from a WMU to a
ground-water well.  The amount of dilution and attenuation is expressed as a
dilution/attenuation factor (DAF), which represents the ratio of the initial leachate
concentration (C ) to the ground-water monitoring well concentration (C ):L MW

The DAF is assumed to be independent of the initial leachate concentration for most chemicals.  
For a given initial leachate concentration, there is a direct, one-to-one correspondence between
DAF and monitoring well concentration.  Therefore, computing a DAF for specific WMU
scenarios allows for easy determination of the expected ground-water well concentration.  The
initial leachate concentration is divided by the DAF to determine the expected ground-water well
concentration.  Similarly, the toxicity reference level at the ground-water well represents an
acceptable threshold value for the concentration of chemicals in ground water.  Multiplying the
toxicity reference level by the DAF produces an acceptable concentration level from a unit waste
leachate.  This acceptable leachate concentration is known as the leachate concentration
threshold value (LCTV).
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LCTV = DAF * TRL

where:

  LCTV = Leachate Concentration
Threshold Value

  DAF   = Dilution/Attenuation Factor

  TRL = Toxicity Reference Level  

(e.g. MCL or HBN)

The LCTV computed for a specific
chemical for a given ground-water
modeling scenario is compared to the
leachate concentration of  a waste of
concern, as measured using the TCLP or
other appropriate leaching test.  If the
leachate concentration is below the
LCTV, the scenario modeled for the
waste of concern will be protective of
ground water.

The conceptual model described here is
evaluated with a probabilistic ground-
water model developed by the Agency,
EPACMTP, EPA’s Composite Model for
Landfills with Transformation Products
(U.S. EPA, 1996a).  The probabilistic aspects of EPACMTP are summarized in Section 2.2. 
Additional details on specific EPACMTP modeling assumptions and parameter values and data
sources are provided in Section 3.3.  

2.1.2 Waste Management Unit liners  

The primary method of controlling the release of waste constituents to the subsurface is to install
a low permeability liner at the base of a WMU.  A liner generally consists of a layer of clay or
other material with a low hydraulic conductivity that is used to prevent or mitigate the flow of
liquids from a WMU.  However, the type of liner that is appropriate for a specific WMU is highly
dependent upon a number of location-specific parameters, such as climate and hydrogeologic
characteristics.  In addition, the amount of infiltration of liquids from a WMU has been shown to
be a highly sensitive parameter in predicting the release of contaminants to ground water. 
Therefore, one of the main objectives of the two-tiered modeling approach is to evaluate the
appropriateness of a proposed liner design in the context of other location-specific parameters
such as precipitation and evaporation and the characteristics of the subsurface beneath a facility.  

EPA has chosen to evaluate three types of liner scenarios, the no-liner, single-liner, and
composite-liner scenarios.  The no-liner scenario (Figure 2a) represents a WMU that is relying
upon location-specific conditions such as low permeability native soils beneath the unit or low
annual precipitation rates to mitigate the release of contaminants to ground water.  The single-
liner scenario represents a 3 foot thick clay liner with a low hydraulic conductivity (1x10  cm/sec)-7

beneath a WMU (Figure 2b).  The composite-liner scenario consists of a 3-foot-thick clay liner
beneath a 40 mil thick high-density polyethyelene (HDPE) flexible membrane liner or FML
(Figure 2c).
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Figure 2-2 Three Liner Scenarios Considered in the Two-Tiered Modeling
Approach for Nonhazardous Solid Waste Guidelines.

While other liner scenarios may be proposed by a facility or considered by the State authorities,
such as double liners or liners with drainage layers and leachate collection systems, they are not
addressed in the two-tiered approach described in this document.  For further information on
other liner scenarios, the reader is referred to the Guidance (U.S. EPA, 1999).

2.2 Monte Carlo Analysis

In its nationally applicable analyses of the fate and transport of waste constituents, the Agency for
regulatory purposes, generally uses a Monte Carlo approach to compute probabilistic estimates of
constituent concentrations in hypothetical downgradient ground-water wells.  The Monte Carlo
procedure randomly draws input parameter values from representative statistical distributions for
each parameter (Figure 2-3).  A set of input parameter values is developed and the model is run to
compute the ground-water monitoring well concentration and the DAF.  This process is repeated
thousands of times until a distribution of thousands of output values (DAFs) is produced.  The
DAF values are ranked from high to low and for the purposes of the current Guidance, the 90th

percentile DAF is determined.  The 90  percentile DAF represents the amount of dilution andth

attenuation that would occur in at least 90% of the cases modeled.  Specifically, 90% of the DAF
values would be greater than the 90  percentile DAF and 10% would be lower.  In other words,th

the DAF is protective in at least 90% of the modeled cases.  The use of the 90  percentile DAFth

therefore, provides a conservative measure of the amount of dilution and attenuation that would
likely occur.
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Figure 2-3   Schematic Diagram to Illustrate the Monte Carlo Modeling Approach 

2.2.1 Basis for the Use of Monte Carlo Approach

Given the number of input parameters used in EPACMTP (52) and the application of EPACMTP
to determine DAFs representative of waste management facilities nationwide, the output of the
model, the DAF, may be subject to a high degree of variability and uncertainty.   The Monte Carlo
approach accounts for the variability (range of values) and uncertainty (level of confidence that
the values are representative) in the input parameters by computing distributions of DAFs that are
based on representative distributions of input parameters and reasonable and representative
combinations of these input parameters.

The Monte Carlo approach used in EPACMTP has been applied in various EPA regulatory
efforts, including the proposed Hazardous Waste Identification Rule (HWIR) of 1995 (U.S. EPA,
1995) and hazardous waste listing evaluations (for example, the Petroleum Refinery Waste Listing
determination, U.S. EPA, 1997).  As such, the Monte Carlo procedure and it’s applicability to
national analyses has been extensively reviewed within EPA and by the Science Advisory Board
and has been subject to public review and comment.
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2.2.2 Basis for Use of the 90th Percentile

The selection of a 90  percentile DAF (for DAFs ranked from highest to lowest) is based on theth

need to choose a level of protection that is conservative and consistent with other EPA analysis
including the proposed 1995 HWIR and hazardous waste listing efforts mentioned above.  Also, it
is desirable to have a large degree of confidence that the results are adequately protective of
human health and the environment given the degree of uncertainty inherent in the data and the
analyses.  Therefore EPA has selected the 90  percentile output of the ground-water fate andth

transport modeling for this guidance.  The 90  percentile DAF implies that of the modeledth

scenarios (which are assumed to be representative of facilities nation wide) 90% result in DAFs
that are higher than the 90  percentile DAF and thus are considered protective.th

2.3 Development of Neural Networks to Emulate Ground-Water Models 

To enable users to perform a ground-water modeling analysis to evaluate a WMU design, EPA
developed a user-friendly method to obtain the results of other ground-water modeling analyses
conducted by the Agency.  The Agency generally uses EPA’s EPACMTP ground-water fate and
transport model analyses.    However, because EPACMTP is a mechanistic model that runs in
Monte Carlo mode, it requires up to several thousand iterations or realizations for each simulation
to account for changes in parameter values.  Each iteration uses one set of input parameter values
that are randomly drawn from a representative statistical distribution.  This process is repeated
2,000 times for each simulation to produce a statistical distribution of output values.    

Therefore, even when EPACMTP is run on a current generation PC, such as a Pentium II, it
requires up to several hours to complete a 2,000 iteration Monte Carlo simulation.  In addition,
EPACMTP is a complex model that requires ground-water modeling expertise and a large amount
of facility and hydrogeologic data to be used effectively.  Therefore, EPA developed a simplified
easy-to-use version of EPACMTP for users with little or no ground-water modeling expertise and
a minimum amount of key location-specific data.  After exploring options, EPA chose to develop
a neural network as a user friendly predictive tool that simulates EPACMTP and will compute a
DAF based on user-defined values of 6 to 7 key EPACMTP input parameters.

A brief overview of what neural networks are and how they are used to evaluate Industrial WMU
designs is provided in the following sections.
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2.3.1 Brief Overview of Neural Networks

A neural network is a computational tool that can be used to predict outcomes based on the
characteristics of multiple inputs to a function or a system.  Neural networks generate a model to
predict values of a variable (outputs) as a function of input data and can provide accurate
predictions over wide ranges of input values for non-linear and non-Gaussian processes (SPSS,
1996).  Many neural network models are similar or identical to popular statistical techniques such
as generalized linear models, polynomial regressions, and nonparametric regressions (Sarle,
1994).  Neural networks have been used in a number of real-world applications, including
optimizing ground-water remediation strategies (Rogers, et al, 1995, Johnson and Rogers, 1995). 
Specifically, neural networks have been used in place of a mechanistic fate and transport model to
determine the remediation success of various configurations of pumping wells to withdrawal and
control of contaminant plumes (Rogers, et al, 1995).  Neural networks also have been used to
evaluate “what if” scenarios with Monte Carlo-style simulation experiments (Kalos and Whitlock,
1986).  Other applications of neural networks to ground-water problems include prediction of
aquifer parameters from geophysical curves (Aziz and Wong, 1992) and geospatial estimation of
hydraulic conductivity (Rizzo and Daugherty, 1994).

Neural networks are developed with software that consists of a large number of simple
computational or processing units (referred to as neurons) that are interconnected in a net-like
structure.  Software neural networks derive their terminology from their similarity to biological
neural networks, such as the brain, in which the processing units are “neurons” that are
interconnected.  Both biological and software neurons receive input signals and send an output
signal to other neurons in the network.  The strengths of the connections between neurons,
referred to as weights, can be changed in response to information provided to the neural network. 
As such, the network can learn and/or be “trained” to produce an output based on a set of inputs.

Neural networks are analogous to regression analysis, a statistical technique used to develop a
best fit to observed data that can be used to predict an outcome based on a number of inputs.   As
stated above, each layer in a neural network consists of “nodes” (also known as neurons) and
weights (Figure 2-4).  The input nodes are the independent variables and the output nodes are the
dependent variables.  The hidden node values are analogous to regression equation terms and the
weights are analogous to the coefficients in a regression equation.  Neural networks are most
often trained using least squares methods (Sarle, 1994), which involves minimizing the sums of
squares of the error (similar to regression models) over all outputs. 
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Figure 2-4   Schematic Diagram of a Neural Network

The neural network makes an initial prediction of what an outcome should be based on inputs it is
given.  It then computes the error, that is, the difference between the target (predicted) and actual
(observed) values.  Weights are then adjusted to reduce the errors and the neural network
“backpropagates”  to nodes within the network.  Backpropagation involves working backward
from the output node to adjust the weights accordingly, and reduce the average error across all
nodes.  This process is repeated until the weights reach their optimal values and the error in the
output is minimized.

Components of Applying Neural Networks

The successful application of neural networks requires consideration of the following aspects,
which are discussed below:

• Selecting an appropriate neural network architecture,
• Data pre-processing,
• Training, 
• Performance evaluation
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Many varieties of neural network architecture are available including multi-layer perceptrons
(MLP), Radial Basis Functions (RBF), and Self Organizing Maps (Kohonnen networks) (SPSS,
1996). MLP networks are general-purpose, flexible, nonlinear models, based on the original
models of neural computing (Sarle, 1994).  MLPs (which are the architecture depicted in Figure
2-4) are suited to a wide range of applications, and currently are the most successful and widely
used neural computing model (SPSS, 1996).  For these reasons, EPA selected the MLP as the
most appropriate architecture for developing neural networks for the Guidance.

Pre-processing applies to any operations performed on the raw data to extract features relevant to
a specific application, for example, natural log transformations and removal of outliers.   For the
Tier 2 neural network, log transformations were made of all input parameters and the output
values (the DAF) to obtain values that were normally distributed.  

The training or learning process consists of presenting the neural network with example data and
then adjusting the network’s internal weights until the desired response is obtained.  The method
used to adjust the weights is known as the training algorithm.  Generally two types of training
algorithms are used to develop neural networks: “supervised training” and “unsupervised
training”.  In supervised training, the neural network learns to adjust its weights so that the
outputs coincides with a particular target value.  In unsupervised training, the neural network is
not provided with a “target”.  Instead, it learns to recognize patterns inherent in the data.  Given
that the purpose of the neural networks was to predict a target DAF value, EPA used supervised
training.  

In general, increased numbers of training data sets and increased training iterations (the actual
number of counts or times the weights are adjusted) will increase the predictive capability of a
neural network.  However, if a neural network is highly trained on data it has seen (training data
sets), it might not be able to predict well using input data it has not been trained on.  A key
attribute of a trained neural network application is its ability to generalize (i.e., to give accurate
answers on data that it did not “see” as part of the training process.)  However, neural networks
can become “over-fitted”.  An over-fitted neural network is one that produces excellent results
with the training input data, but performs poorly when presented with data it has not seen before,
even if it comes from the same source (i.e., the EPACMTP) as the training data.  Such a neural
network results in poor generalization.  The achievement of good generalization is a key design
aim, and it is achieved by careful choice of neural network size and the amount of training applied
to the neural network.

Performance evaluation of neural networks consists of evaluating the ability of the trained
network to predict an output based on inputs.  A neural network’s performance can be evaluated
using standard R-squared statistics and plots of the actual outputs versus the neural network
predicted outputs with 90% confidence intervals.  Sensitivity analyses can be performed to
determine the sensitivity of an output variable to changes made in input values.  The results can be
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ranked in order of decreasing sensitivity.

Selection of Appropriate Neural Network Training Software

Numerous neural network training software packages are available commercially and as
shareware and freeware.  For the purposes of the current Guidance, a low-cost package called
NNModel (Neural Fusion, Inc. 1998) was evaluated.  NNModel was demonstrated to be an
appropriate neural network modeling package for the purposes of developing the Guide for
Industrial Waste Management based on it’s ease of use, it’s technical capabilities, low-cost, and
ability to produce robust neural networks.  Trial versions of the software are available on a
shareware basis (http://www.neuralfusion.com/).

2.3.2 Development of a Neural Network to Emulate EPACMTP for Tier 2, Location-
Adjusted Evaluations 

To develop a neural network for the Tier 2 analysis for evaluations of Nonhazardous Solid Waste
WMUs, the following steps were performed:

C EPACMTP was run to create training and test data sets;
C the EPACMTP output was imported to spreadsheets of modeling inputs and results;
C the spreadsheets were imported into NNModel and a data matrix was created;
C the data were examined with graphical visualization features of NNModel and appropriate

transformations were performed to normalize the data;
C a neural network was created with the training and tested with test data sets; and
C the output for the neural network software is an exported neural network (ENN file),

which is then linked to the windows-based graphical user interface.

For the Tier 2 analysis described in Section 2.6, a neural network was developed with the
NNModel software and trained using sets of EPACMTP input and output parameter values.   The
trained network was used to predict the EPACMTP output value (the DAF) as a function of
combinations of EPACMTP input values.  The EPACMTP input parameters used to develop the
trained neural networks are:

C area;
C infiltration;
C chemical hydrolysis rate;
C organic carbon partition coefficient;
C depth to water table;
C aquifer thickness; and
C distance to ground-water well.
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Numerous combinations of various percentile values for each of these parameters were used to
train the neural network (i.e., provide the neural network with the information necessary to
predict the DAF based on changes in the values of these parameters).  EPACMTP was run to
develop a number of “training data sets” (sets of input and output parameter values) for
combinations of these values, in which the DAF is the required output.  Additional details of the
neural networks developed for the Tier 2 analysis are provided in Section 5 and Appendix A.

2.4 Tier 1

For the Tier 1 National Evaluation modeling, the ground-water modeling scenario uses the
conceptual model presented in Figure 2-1 (see section 3.3 for details of the assumptions used). 
The modeling assumptions used for three liner scenarios (shown in Figure 2-2)  are the same for
all chemicals considered, except for two chemical-specific parameters.  The chemical-specific
parameters, the organic carbon partition coefficient (K ) and the decay rate (λ), are used toOC

determine the degree to which a chemical will sorb to subsurface soil particles and/or hydrolyze or
otherwise breakdown into daughter chemical products, respectively.  EPACMTP modeling was
performed for the National Evaluation, and the results of this modeling are incorporated in tabular
form in the IWEM software, providing Leachate Concentration Threshold Values (LCTVs) for all
of the 190 Nonhazardous Solid Waste chemicals for liner scenarios for each type of WMU (with
the exception that only the no-liner scenario is considered for land application units).

Given the large number of combinations of K  and λ for organic chemicals and the amount ofOC

time required to perform EPACMTP simulations for each of the organic constituents, EPA
developed an interpolation procedure to reduce the amount of effort required to develop DAFs
for organics.  The process involved performing simulations for a range of representative
combinations of K  and λ and interpolating between these values to obtain DAFs for theOC

majority of the organic chemicals.  This interpolation method and tests used to verify it are
described in the EPACMTP Finite Source Methodology Background Document (U.S. EPA,
1996b).

The measure of how appropriate a liner design is for a particular WMU is determined by
comparing the estimated waste constituent leachate concentration (as determined by the TCLP or
other appropriate EPA test method) to the calculated LCTV in the appropriate Look-Up Table.  
This look-up function is performed automatically in the IWEM software.  The result of this
comparison determines the recommended liner system for the WMU or determines whether land
application of this waste is appropriate and will not exceed the toxicity reference levels (i.e.,
health-based numbers or maximum contaminant levels) at a down gradient ground-water well.  

For example, if the estimated leachate concentrations for all constituents are lower than the
corresponding no-liner LCTVs, then the no-liner scenario is recommended as being sufficiently
protective of ground water.  If any leachate concentration is higher than the corresponding no-
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liner LCTV, then a minimum of  a single clay liner is recommended.  If any leachate concentration
is higher than the corresponding single-liner LCTV, then a minimum of a composite liner (an FML
geomembrane overlain by a clay liner) is recommended.  For waste streams with multiple
constituents, the recommended liner design is based on the most protective liner required for any
one constituent.

2.5 Tier 2

The Location-Adjusted Evaluation (Tier 2) is provided to assist the user in risk-based decision
making regarding WMU liners or land application of waste.  The Tier 2 Evaluation uses a set of
four neural networks (one for each type of WMU) which enables the user to input certain
location-specific data from a proposed or existing WMU.  These location-specific data are then
used to determine whether a liner is recommended as part of the WMU design for a given facility
or to determine whether or not land application of a waste is protective of ground water.

Using a set of several thousand EPACMTP simulations, a neural network was trained for each
type of WMU to estimate the DAFs that EPACMTP would have generated based on the values of
the input parameters.  The user can vary input parameter values within the range of values in
EPACMTP’s nationwide distributions, and the neural network then predicts the results that
EPACMTP would have generated.  Thus, the Location-Adjusted Evaluation allows the user to
instantaneously evaluate a number of site-specific considerations without having to run
EPACMTP or another ground-water fate and transport model.  The Tier 2 neural networks mimic
EPACMTP model results without requiring long simulation times.  Additionally, the intuitive,
windows-based user interface eliminates the need for the user to have training or extensive
knowledge of  neural networks, the EPACMTP model, or statistics.  As is done in the National
Evaluation, the expected waste leachate concentrations are compared to the Location-Adjusted
LCTVs for the constituents of concern to determine the recommended liner type for the WMU or
to determine whether land application of a waste is appropriate.

In developing and training the neural networks, problems were encountered when the extremes of
the distributions were used as input to the training.  Training of the neural networks was then
limited to parameter values between the 10  and 90  percentile.  The composite-liner infiltrationth th

rate assumed in Tier 1 (3 x 10  m/yr for landfills) was outside the 10  to 90  percentile range-5 th th

(0.024 to 0.45 m/yr for landfills), and thus the neural networks were not trained using this value. 
Because the use of infiltration rates outside the range over which the neural networks were
trained will result in significant error, the Tier 2, Location-Adjusted Evaluation does not explicitly
address the composite-liner scenario.
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The proposed guidance still allows for assessment of the composite-liner scenario through the
Tier 1 and Tier 3 evaluations.  EPA is seeking comment on how to address inclusion of the
composite-liner scenario in the Tier 2 Location-Adjusted Evaluation.  One option currently under
consideration is the development of multiple networks —  one for low infiltration rates and one for
high infiltration rates.
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3.0 MODELS USED TO DEVELOP THE TWO-TIERED APPROACH

This section presents summary descriptions of the models used to develop the Tier 1 LCTVs and
the Tier 2 neural networks.  The following models were used: 

C the HELP model for determining WMU infiltration rates; 
C the MINTEQA2 model for determining metals sorption; and 
C EPACMTP for determining dilution/attenuation factors (DAFs) of waste constituents in

ground water.  

Additional information can be found in the references cited in the description for each model.  The
software used to develop the neural networks for Tier 2 is discussed briefly in section 2.3.1 and
additional detail on the development of neural networks is provided in Section 5.0.

3.1 HELP

The Hydrologic Evaluation for Landfill Performance (HELP) model is a quasi-two-dimensional
hydrologic model used to compute water balance analyses of landfills, cover systems, and other
solid waste management facilities (U.S. EPA, 1994).  HELP uses weather, soil and design data
and computes a water balance for landfill systems accounting for the effects of surface storage,
snowmelt, runoff, infiltration, evapotranspiration, vegetative growth, soil moisture storage, lateral
subsurface drainage, leachate recirculation, unsaturated vertical drainage, and leakage through
soil, geomembrane or composite liners.  HELP can model landfill systems consisting of various
combinations of vegetation, cover soils, waste cells, lateral drain layers, low permeability barrier
soils, and synthetic geomembrane liners.  The model computes runoff, evapotranspiration,
drainage, leachate collection and liner leakage that may be expected to result from the operation
of a wide variety of landfill designs.  The primary purpose of the model is to assist in the
comparison of design alternatives.

3.1.1 Determining Infiltration from a Waste Management Unit

The HELP model requires that the user: input climatic data, using historical data provided for up
to 101 cities in the U.S.; select the number of soil, waste and liner layers (e.g., liner, cover, waste
layer, drainage layer) and the characteristics of each layer (thickness, hydraulic conductivity, etc.);
and select surface characteristics (SCS Runoff Curve number, vegetative cover, and whether the
layer is compacted).  HELP uses these inputs to compute a water balance for the scenario selected
by the user by computing the amount of precipitation that reaches the surface of the unit, minus
the amount of runoff and evaporation.  HELP then computes the amount of water that infiltrates
through the surface layer (if applicable), into the waste layer, and through the bottom soil or liner,
based on the initial moisture content and the hydraulic conductivity of each layer.  The output
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from the model is the amount of water that infiltrates through the bottom of the WMU.  This
value is then input to EPACMTP as the infiltration rate (in m/yr).

3.1.1.1   Determination of Surface Impoundment Infiltration Rate

The HELP model does not have the capability to estimate infiltration rates from surface
impoundments.  However, this capability is incorporated into EPACMTP.  EPACMTP estimates
the rate of infiltration through the base of the impoundment as a function of (1) the ponding depth
of liquid in the waste unit, (2) the thickness of a low permeability sediment layer, or liner, at the
base of the impoundment, and (3) the hydraulic conductivity of this impeding layer.  Additional
information regarding characterization and modeling of liquid wastes managed in surface
impoundments is provided in the “EPACMTP Background Document and User’s Guide” (U.S.
EPA, 1996a).

3.1.2 Sensitivity of HELP Model to Input Parameter Values

As part of the evaluation of the applicability of the HELP model to the two-tiered approach, a
sensitivity analysis was performed on the HELP model to determine the most sensitive, HELP
input parameters (Allison Geoscience Consultants, Inc., 1997a).  While the industrial waste
guidance focuses its evaluation on the liner characteristics, this sensitivity analysis examined all
HELP model input parameters to confirm the sensitivity of the liner characteristics.  The
sensitivity of the infiltration rate (computed with the HELP model) input to EPACMTP is
discussed in Section 5.1

The sensitivity analysis quantitatively ranked HELP model input parameters based on their
influence in determining the model’s prediction of the infiltration rate of liquid from the bottom of
a simulated landfill.  The input parameters were restricted to a range of values expected in actual
field designs and the analysis used a Monte Carlo shell program developed for EPA (Salhotra et
al., 1988) linked with HELP.  The Monte Carlo shell program linked to HELP enabled the
specification of many of the HELP input parameters as probabilistic distributions rather than
single, deterministic values.  This allowed the parameter values to be random variables that take
on new values each time the model is executed.  The Monte Carlo shell supervises multiple
executions of the HELP model, with each random variable assuming a new value for each
execution.  This can be likened to running the HELP model many times, with new values of  the
input parameters each time.  

The probability distributions for each HELP input parameter limit the range of values the
parameter can assume and even statistical properties that the set of generated parameter values
should have, such as the mean and standard deviation.  In this way, a large number of HELP
simulations, each made with input parameters that have been randomly generated but constrained
according to particular limits and statistical measures, are completed with a minimum of user
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interaction.  This large set of HELP simulations can be thought of as a set of deterministic model
outcomes (or outcomes given some particular set of inputs).  Each of the randomly generated
model inputs was saved along with the model outcomes to determine which input parameters are
most important in determining model outcome and the parameters were ranked according to their
impact on the model output.   This was accomplished by developing a correlation matrix that
shows the statistical correlation between each model input parameter and the model outcome of
interest.

The landfill scenario evaluated consisted of a closed landfill scenario with a cap consisting of a
vegetative cover layer, a barrier layer, a waste layer, a lateral drainage layer with a leachate
collection system, and a clay liner.  Analyses were conducted for two representative sites, one in a
humid region and one in an arid region of the U.S., based on climate data provided with the
HELP model.

The sensitivity analysis indicated that the HELP model prediction of the average annual infiltration
located in a relatively humid region (Atlanta, Georgia) is most sensitive to the following
parameters: 

1) the layer 1 (surface) soil textural and associated hydraulic properties, 
2) the SCS runoff curve number, 
3) the evaporative zone depth, 
4) quality and quantity of vegetation maintained on the cover, and 
5) the hydraulic properties of the cap barrier layer.

For the same design in an arid region (Las Vegas, Nevada) the model outcome is most sensitive
to: 

1) the evaporative zone depth, 
2) the layer 1 soil textural and associated hydraulic properties, and 
3) the quality and quantity of vegetation maintained on the surface.

The lack of rainfall in the model simulations for the arid case resulted in little or no moisture
reaching the liner.  This may have confounded the sensitivity analysis to the extent that the liner
parameters for these scenarios have no impact on the results.  This may suggest that in such dry
regions the characteristics of the surface component of the landfill cap are very important in
determining landfill performance.

Another conclusion of this sensitivity analysis applies not just to closed landfills, but to HELP’s
prediction of the performance of the bottom liner and leachate collection system.  The percent of
the infiltrate that passes through the cap of a landfill, or that migrates to the bottom liner in the
case of an open landfill, and then percolates through the bottom liner, as predicted by HELP, is
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determined by: 1) the hydraulic properties of the bottom liner and 2) the maximum drainage
distance of the leachate collection system.  Neither thickness of the liner or of the drainage layer,
nor slope to the drains appears to be of much importance in HELP’s estimate of this landfill
performance measure.  This conclusion is derived from analysis of the humid region results only,
because of the lack of leachate that actually penetrated the cap barrier in the arid region case.

A related conclusion concerns the sensitivity of the model’s prediction of the peak head on the
bottom liner.  That model outcome is most sensitive to: 1) the hydraulic properties of the bottom
liner, 2) the maximum drainage distance of the leachate collection system, 3) the soil textural and
hydraulic properties of the lateral drainage layer, and 4) the slope of the bottom layer in between
the drains.  This conclusion also is based only on the humid region modeling results, however, it
would apply to the arid region scenario if a sufficient amount of liquid were to reach the bottom
liner of the landfill.

The EPA acknowledges the importance of landfill design characteristics and the evaluation of
drainage layers and leachate collection systems may most appropriately be considered in detailed
Tier 3 analyses.  However, the focus of the two-tiered approach is on the three liner scenarios
described in Section 2.0.  The HELP model sensitivity analysis confirms the primary importance
of the hydrologic characteristics of the liners considered in Tier 1 and Tier 2.

3.2 MINTEQA2-derived and Empirical Isotherms

The process that most affects the transport of metals in the subsurface is sorption.  The effect of
sorption on metals transport is determined with sorption distribution coefficients.  The sorption
distribution coefficients (K ) for metals used in the Tier 1 and Tier 2 scenarios are compatible withd

those used in other U.S. EPA regulatory efforts.  The K  values used in the modeling on whichd

the Tier 1 approach is based are non-linear representations in which K  is represented as ad

function of the total metal concentration and several important geochemical variables.  The neural
network used in the Tier 2 approach precluded the use of metal concentration-dependent Kd

values.  Therefore, empirical representations in which K  is represented as a function of pH onlyd

were used.  The methods use to model metals sorption are described in the following sections.

 3.2.1 The K  Values for Metals Used in Modeling Support for Tier 1d

The K  values for metals used in the modeling support for the Tier 1 approach were identical tod

those presented in U.S. EPA (1995).  The K  values were characterized in one of two ways,d

depending on the metal: 1) using empirical relationships that express K  as a function of pH or 2)d

using the MINTEQA2 speciation model (Allison, et al, 1991).

Empirical relationships that express K  as a function of pH were used (U.S. EPA, 1990) for thed

following metals:
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C arsenic (As), 
C antimony (Sb), 
C chromium in the +6 oxidation state (Cr ), VI

C selenium (Se), and 
C thallium (Tl).  

The empirical pH-dependent relationships for these metals are shown in Table 3-1. 

Table 3-1   Empirical pH-dependent K  Relationships from U.S. EPA (1990).d

Metal K  (liters kg )d
-1

As 10 III (0.0322 pH + 1.24)

Cr 10 VI (-0.117 pH + 2.07)

Sb 10 V (-0.207 pH + 2.996)

Se 10 VI (-0.296 pH + 2.71)

Tl 10 (0.110 pH + 1.102)

For the following metals, the MINTEQA2 equilibrium speciation model was used to compute Kd

as a function of metal concentration for specific settings of important system variables (pH,
quantity of sorbent, etc.):

C barium (Ba), 
C beryllium (Be), 
C cadmium (Cd), 
C chromium in the +3 oxidation state (Cr ), III

C copper (Cu), 
C lead (Pb), 
C mercury (Hg), 
C nickel (Ni), 
C silver (Ag), 
C vanadium (V), and 
C zinc (Zn).  

The system-dependent, metal concentration-dependent K  values computed with MINTEQA2d

were then used in the unsaturated zone fate and transport modeling performed with EPACMTP. 
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MINTEQA2 
Input data:
C pH, 
C the major ion composition of the 

ground water, 
C the expected concentration of

dissolved and particulate organic
carbon (DOC and POC), and 

C an estimate of the concentration of
binding sites associated with hydrous
ferric oxide (HFO) of the solid
aquifer matrix.  

Output:
C used to compute K the ratio of totald; 

sorbed metal concentration to total
dissolved metal concentration at
equilibrium. 

The MINTEQA2 model and its use in determining the non-linear K  relationships are describedd

below.  

Description of MINTEQA2

MINTEQA2 is an equilibrium speciation
model developed and distributed by the U.S.
EPA (Allison et al., 1991).  For a particular
metal, the model is used to calculate the
equilibrium mass distribution among
dissolved, sorbed, and precipitated phases. 
The input data for the model includes the pH,
the major ion composition of the ground
water, the expected concentration of
dissolved and particulate organic carbon
(DOC and POC), and an estimate of the
concentration of binding sites associated with
hydrous ferric oxide (HFO) of the solid
aquifer matrix.  The output from MINTEQA2
can be used to compute K .  Specifically, ford

a particular metal, K  is the ratio of totald

sorbed metal concentration to total dissolved
metal concentration at equilibrium.  A key
assumption in using MINTEQA2 to compute
K  values for ground water is that the rate ofd

chemical reactions, including sorption reactions, is fast relative to the ground-water flow velocity. 

A typical K  result computed by MINTEQA2 for Cd is shown in Figure 3-1.  This result showsd

the variation in log K  with the total cadmium concentration (log scale) for the case where pH isd

6.8 and the concentrations of Cd binding sites associated with the DOC, POC, and HFO are all
set to a mid-range value from a distribution of reasonable values.  Details of the use of
MINTEQA2 in computing K  values used in Tier 1 modeling support are presented elsewhered

(U.S. EPA, 1996c).  
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Figure 3-1  Variation in log K  with log of Total Cd Concentration.d
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(2)

(3)

3.2.2 The K  Values for Metals Used in the Neural Network for Tier 2 d

The K  values for metals used in the neural network for Tier 2 are determined on the basis of pH. d

The pH-dependency for each metal is represented in the form of a regression equation of the
form:

as presented in U.S. EPA (1990).  The empirically derived a and b parameters for this equation
are shown in Table 3-2, as are representative values of K  at pH 4.9, 6.8, and 8.0.  The pH-d

dependent relationships whose parameters are shown in the table were determined from
experimental analysis of aquifer material samples collected from across the U.S.  The pH-
dependent K  relationships for As(III), Cr(VI), Sb(V), Se(IV), and Tl(I) have been used in otherd

U.S. EPA regulatory efforts (e.g., U.S. EPA, 1995).
 
The metals Ag, Cr(III), and V were not included in the U.S. EPA (1990) study.  For the tier 2
neural network, the pH-dependent relationship presented in Table 3-2 for Ni is also used for Ag,
and the relationship for Cu is also used for Cr(III).  Vanadium is assumed to be in the anionic
form vanadate, which is modeled with the As(V) relationship from Table 3-2.

Development of the K  values used in the Tier 2 Neural Networkd

The pH-dependent K  relationships represented in Table 3-2 were determined from analyses of sixd

aquifer material/ground-water samples.  Aquifer material samples were added to ground-water
samples to which metal had been added at concentrations ranging from 3 to 10 mg/L.  After an
equilibration period of 48 hours, the ground-water solution was extracted by centrifugation, and
the metal concentrations remaining in solution were analyzed by inductively-coupled plasma
spectrometry (ICP).  In calculating K  for a particular metal (M), the sorbed metal concentrationd

(C  ) is equivalent to the difference between the total metal [M]  (after metal addition to thes total

sample) and the metal remaining in the extracted supernatant solution [M]  normalized by thesolution

concentration of solid aquifer material SC:



Kd
L
kg

'
Cs

Cd

mg/kg
mg/L

'
[M]total mg/L& [M]solutionmg/L

[M]solution mg/l
@ 1

SC
1

kg/L
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(4)

The equilibrium dissolved metal concentration (C ) is equal to [M] , so that K  is determinedd solution d

with:

Experiments were conducted over a pH range of approximately 2 to 12.  For each metal, the Kd

values from Equation (3) were used in a linear regression analysis with pH as the independent
variable.  The parameters defining the resulting linear regression equations are those presented in
Table 3-2.   

Limitations of K  Values Used in the Tier 2 Neural Networkd

The empirical pH-dependent K  values of the U.S. EPA (1990) study are subject to uncertaintyd

and to limitations and assumptions that arise from the experimental methods and the statistical
analysis of the data.  Most of the limitations result in increased likelihood of under-estimating
sorption (and K ) and increased uncertainty in the values.  Certainly, the usual assumptionsd

regarding equilibrium partitioning apply: the rate of partitioning of metal between the solution and
solid phases was such that a close approach to equilibrium was achieved in the 48 hour
equilibration period.  If this was not the case, the K  values may under-estimate actuald

partitioning.  Also, the usual problems associated with filtering a sample to separate the solution
and solid phases after equilibration contribute to uncertainty in the results.  Other factors that
should be taken into account when assessing these results include:  

     1. The [M]  values used in Equation (3) did not always represent the actualsolution

concentration of metal remaining in solution.  This is because of limitations of the
ICP instrument used for this measurement.  In cases where the concentration of
metal remaining in solution was below the instrument detection limit, the value of
[M]  used in Equation (3) was set equal to the detection limit.  This primarilysolution

impacted the value of the denominator in Equation (3).  In cases where [M]  wassolution

set to the detection limit, the resulting K  was under-estimated.  Different metalsd

have different detection limits in this instrument, as detailed in U.S. EPA (1990).
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Table 3-2 Regression Parameters of the pH-dependent K  Relationships used in thed

Neural Network. (U.S. EPA, 1990).

Metal a b K  (L/kg)d

pH 4.9 pH 6.8 pH 8.0

As(III) 0.0322 1.240±0.910 24.99 28.77 31.45

As(V) -0.219 3.340±0.641 184.88 70.93 38.73

Ba 0.190 0.638±0.811 37.07 85.11 143.88

Be 0.378 -0.200±0.907 44.90 234.64 666.81

Cd 0.397 -0.943±0.820 10.05 57.10 171.00

Cr(VI) -0.117 2.070±1.309 31.38 18.81 13.61

Cu 0.355 0.044±1.022 60.74 287.08 765.50

Hg 0.122 1.420±0.493 104.18 177.66 248.89

Ni 0.332 -0.471±0.797 14.32 61.18 153.11

Pb 0.0768 1.550±0.394 84.40 118.10 146.02

Sb(V) -0.207 2.996±0.512 95.87 38.76 21.88

Se(IV) -0.282 3.300±0.438 82.83 24.12 11.07

Se(VI) -0.296 2.710±0.947 18.18 4.98 2.20

Tl(I) 0.110 1.102±0.542 43.75 70.79 95.94

Zn 0.378 -0.621±0.820 17.03 89.00 252.93
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2. For a particular metal, the set of K  values used in the statistical regression analysisd

included values that were calculated using [M]  set to the detection limit.  Thus,solution

the resulting regression equations include the effects of under-estimates of K .   d

3. The ratio of solid aquifer material to solution was representative of a system with a
low concentration of sorbing sites relative to the metal concentration.  For a given
metal concentration, such systems generally present a lower K  than systems with ad

higher concentration of sorbing sites.  The degree to which the resulting K  valuesd

tend toward the conservative because of the ratio of sorbing sites to metal
concentration is difficult to quantify.      

4. For a particular metal, these K  values were determined at one particular total metald

concentration.  Consequently, they do not represent the expected change in K  withd

total metal concentration.  These K  values may be under-estimates in comparisond

with the actual K  of the identical system with a lower total metal concentration. d

Conversely, they may be over-estimates of K  in comparison with the actual K  ofd d

the identical system with a higher total metal concentration. 

3.2.3 Linear and Non-linear Sorption Isotherms

For a particular instance of transport modeling, the use of K  values that vary with total metald

concentration corresponds to the assumption of a non-linear metal sorption isotherm.  The Tier 1
approach reflects the non-linear isotherm assumption. The use of a single K  value (not dependentd

on metal concentration) in a particular instance of transport modeling, as is done in the neural
network for Tier 2, corresponds to the assumption of a linear sorption isotherm.  The assumption
of a linear sorption isotherm is more realistic for metals that are not as strongly sorbed and for
instances where the maximum total metal concentration is low.  

Metals are adsorbed by soils and sediments at reactive sites on mineral and organic surfaces.  A
plot of sorbed metal concentration versus dissolved metal concentration at equilibrium is referred
to as an isotherm, and the instantaneous slope of the isotherm plot is K . At low total metald

concentration, the concentration of unreacted surface sites (i.e., those sites available to sorb
metals) is much greater than the concentration of metal.  If the total concentration of metal is
increased, the system will respond by sorbing more metal.  Moreover, the proportion of the added
metal that is sorbed is essentially constant.  Thus, K  changes little so long as the concentration ofd

unreacted sites is not significantly reduced.  At higher metal concentrations, the concentration of
unreacted sites begins to be depleted, and K  for the system decreases more noticeably.  For ad

particular metal at a particular total concentration of sorbing sites, the isotherm plot will show an
almost linear trend (almost constant K ) if only the low metal concentration portion of the curve isd

considered.  The overall nature of the isotherm curve is non-linear, and this will be obvious if the
portion extending to high metal concentration is considered.  The instantaneous slope (K ) can bed
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treated as approximately constant at low metal concentrations, but at higher metal concentrations,
the slope changes considerably from the initial value.

The use of a single K  corresponding to a linear isotherm has been favored in fate and transportd

modeling for metals because for most systems, too little data has been available to characterize the
change in K  with metal concentration, and because transport modeling is simplified by choosing ad

single value.  The distinguishing feature of a non-linear isotherm is that it accounts for the
depletion of available surface sites as successive pore volumes bring more metal into the system. 
This is important because, while the leachate concentration exiting a landfill or other source may
not be very high, the total metal concentration in an equilibrating mass of aquifer in the subsurface
will be equal to the leachate concentration only for the first pore volume.  As adsorption occurs,
successive pore volumes continue to bring in metal until the source is depleted. The total
concentration of metal in the equilibrating mass of aquifer material will be the sum of the newly
arriving leachate metal and the previously adsorbed metal from prior pore volumes.  Depending
on the initial K  and the number of pore volumes of leachate that pass through, the totald

concentration of metal can become quite high, and the K  may decrease due to depletion ofd

unreacted sites.

Given the possible decrease in K  in the subsurface with continued leaching, when it is necessaryd

to use a single K  for fate and transport modeling, a conservative value should be chosen.  As cand

be seen from the foregoing discussion, the initial K  of the pristine system is not a conservatived

value, rather, it is the maximum expected K .  The single K  values used in the Tier 2 approachd d

represent values that have a conservative bias due to several factors (see discussion of limitations
above).  The ratio of solid sorbing sites to total metal concentration in the experiments from
which these K  values were determined contribute to the inherent conservatism of the values in ad

way that is difficult to assess.     

3.3 EPACMTP

EPA’s Composite Model for Leachate Migration with Transformation Products (EPACMTP) is a
fate and transport model used by EPA to establish regulatory levels for concentrations of
chemicals in wastes managed in land disposal units (landfills, surface impoundments, waste piles,
or land application units), for a number of EPA hazardous waste regulatory efforts.  EPACMTP
simulates one-dimensional, vertically downward flow and transport of contaminants in the
unsaturated zone beneath a waste disposal unit as well as two-dimensional or three-dimensional
ground-water flow and contaminant transport in the underlying saturated zone.  The model
accounts for the following processes affecting contaminant fate and transport:  advection,
hydrodynamic dispersion, linear or nonlinear equilibrium sorption, chained first-order decay
reactions, and dilution from recharge in the saturated zone.  
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EPACMTP consists of four major components:

• a module that performs one-dimensional
analytical and numerical solutions for water
flow and contaminant transport in the
unsaturated zone beneath a WMU;

• a numerical module for steady-state ground-
water flow subject to recharge from the
unsaturated zone;

• a module of analytical and numerical
solutions for contaminant transport in the
saturated zone; and 

• a Monte Carlo module for randomly
selecting input values to account for the effect
of variations in model parameters on predicted
ground-water well concentrations

EPACMTP can be run in a probabilistic
Monte Carlo mode (see Section 2.2) to
randomly select parameter values from their
respective statistical distributions.  The
Monte Carlo procedure allows assessment
of the uncertainty associated with ground-
water well concentrations that results from
variations in the model input parameters.  

The subsurface modeled by EPACMTP
consists of a WMU, an unsaturated zone,
and an underlying water table aquifer, and a
ground-water well at a downgradient
location in the aquifer (refer back to Figure
2-1).  Contaminants move vertically
downward from the base of the WMU
through the unsaturated zone to the water
table.  EPACMTP allows simulation of flow
and transport in the unsaturated zone and in
the saturated zone, either separately or
combined.  For the two-tiered approach, the
combined scenario was used.

The model accounts for the following mechanisms affecting leachate constituent migration:  

• leachate constituent transport by advection and dispersion, 
• leachate constituent retardation resulting from reversible linear or nonlinear

equilibrium adsorption onto the soil and aquifer solid phase, and 
• chemical and biological degradation processes expressed as a first-order decay

rate.

The latter may involve chain decay reactions if the contaminant or contaminants of concern form a
decay chain.  The assumptions and input parameters required to run EPACMTP for the majority
of EPA ground-water evaluations are listed in Table 3-3.  Modeling assumptions and input
parameter values that are specific to computing infiltration rates for the Guidance are listed in
Tables 4-1 through 4-3.
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Table 3-3    EPACMTP Modeling Assumptions and Input Parameters

Overall Assumptions

Modeling Element Description or Value

Management Landfill
Scenario Surface impoundment

Waste pile
Land application unit

Modeling Scenario Finite-source Monte Carlo;
depleting source for organics,
constant concentration pulse source for metals

Exposure Evaluation Downgradient ground-water monitoring well;
peak well concentration for noncarcinogens, maximum 30-year
average well concentration for carcinogens; 10,000-year exposure
time limit

Regulatory Protection Level 90 percent 

Source Parameters

Parameter Description or Value

Waste Unit Area Derived from Industrial D Waste Survey Data
Waste Unit Volume User-specified
Infiltration Rate

Landfill Site-based, derived from water balance using HELP model
Surface Impoundment Site-based, derived from impoundment depth using Darcy’s law
Waste Pile Site-based, derived from water balance using HELP model
Land Application Unit Site-based, derived from water balance using HELP model

Leaching Duration
Landfill Derived from total mass of waste, continues until all constituents

Surface Impoundment 20 years (operational life of unit)
Waste Pile 20 years (operational life of unit)
Land Application Unit 40 years (operational life of unit)

have leached out 
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Table 3-3    EPACMTP Modeling Assumptions and Input Parameters (cont’d)

Chemical-Specific Parameters:

Parameter Description

Decay Rate
Organic Constituents Hydrolysis constants compiled by U.S. EPA ORD
Metals No decay

Sorption
Organic Constituents K  constants compiled by U.S. EPA ORD
Metals MINTEQA2 sorption isotherm coefficients for [Pb, Hg (II), Ni, Cr

OC

(III), Ba, Cd, Ag, Zn, Cu (II), Be]; pH-dependent isotherm
coefficients for [As (III), Cr (VI), Se (VI), Th]

Unsaturated Zone Parameters

Parameter Description

Depth to Ground water Site-based, from API/USGS hydrogeologic database
Soil Hydraulic ORD data based on national distribution of three soil types (sandy
Parameters loam, silt loam, silty clay loam)
Fraction Organic ORD data based on national distribution of three soil types (sandy
Carbon loam, silt loam, silty clay loam)
Bulk Density ORD data based on national distribution of three soil types (sandy

loam, silt loam, silty clay loam)

Saturated Zone Parameters

Parameter Description

Recharge Rate Site-based, derived from regional precipitation and evaporation: and

Saturated Thickness (depth to water Site-based, from API and USGS hydrogeologic database
table)
Hydraulic Conductivity Site-based, from API and USGS hydrogeologic database
Hydraulic Gradient Site-based, from API and USGS hydrogeologic database
Porosity Effective porosity derived from national distribution of aquifer

Bulk Density Derived from porosity
Dispersivity Derived from distance to ground-water well
Ground-water Temperature Site-based, from USGS regional temperature map
Fraction Organic Carbon National distribution, from U.S. EPA STORET database
pH National distribution, from U.S. EPA STORET database

soil type

particle diameter
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Table 3-3    EPACMTP Modeling Assumptions and Input Parameters (cont’d)

Ground-Water Well Parameters

Well Element Description

Radial Distance From WMU Nationwide distribution, from U.S. EPA screening survey (U.S.

Angle Off-Center Uniform within ± 90E from plume center line (no restriction within

Depth of Intake Point Uniform throughout saturated thickness of aquifer

EPA, 1987)

plume)

Notes: 
API             = American Petroleum Institute
HELP          = Hydrologic Evaluation Landfill Performance
ORD            = Office of Research and Development
USGS          = United States Geological Survey
STORET      = Data Base Utility for the Storage and Retrieval of Chemical, Physical, and Biological Data for Water Quality.
For Additional information on EPACMTP data sources, see U.S. EPA (1996a, 1996b, and 1996c).

3.3.1 Analysis of Unsaturated Zone and Saturated Zone Flow and Transport

The method used in EPACMTP to analyze flow and transport in the unsaturated and saturated
zones is described as follows:

Flow in the Unsaturated Zone.  Flow in the unsaturated zone is assumed to be steady-state,
one-dimensional vertical  flow from beneath the source toward the water table.  The lower
boundary of the unsaturated zone is assumed to be the water table. The flow in the unsaturated
zone is predominant gravity-driven, and therefore the vertical flow component accounts for most
of the fluid flux between the source and the water table.  The flow rate is assumed to be
determined by the long-term average infiltration rate through the WMU.   In surface
impoundments, the flow rate is assumed to be determined  by the average depth of ponding.

Transport in the Unsaturated Zone.  Contaminant transport in the unsaturated zone is assumed
to occur by advection and dispersion.  The unsaturated zone is assumed to be initially
contaminant-free, and contaminants are assumed to migrate vertically downward from the
disposal facility.  EPACMTP can simulate both steady-state and transient transport in the
unsaturated zone with single-species or multiple-species chain decay reaction, and with linear or
nonlinear sorption.

Flow in the Saturated Zone.  The saturated zone module of EPACMTP is designed to simulate
flow in an unconfined aquifer with constant saturated thickness.  The model assumes regional
flow in a horizontal direction with vertical disturbance resulting from recharge and infiltration
from the overlying unsaturated zone and waste disposal facility.  The lower boundary of the
aquifer is assumed to be impermeable.  Flow in the saturated zone is assumed to be  steady-state. 
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EPACMTP accounts for different recharge rates beneath and outside the source area.  Ground
water mounding beneath the source is represented in the flow system by increased head values at
the top of the aquifer.  This approach is reasonable as long as the height of the mound is small
relative to the thickness of the saturated zone. 

Transport in the Saturated Zone.  Contaminant transport in the saturated zone is assumed to be
a result of advection and dispersion.  The aquifer is assumed to be initially contaminant-free, and
contaminants are assumed to enter the aquifer only from the unsaturated zone immediately
underneath the waste disposal facility, which is modeled as a rectangular, horizontal plane source. 
EPACMTP can simulate both steady-state and transient three-dimensional transport in the
aquifer.  For steady-state transport, the contaminant mass flux entering at the water table must be
constant with time; for the transient case, the flux at the water table may be constant or may vary
as a function of time.  EPACMTP can simulate the transport of a single-species or multiple-
species subject to chain decay reactions, and linear or non-linear sorption.
 
EPACMTP also accounts for chemical and biological transformation processes.  All
transformation reactions are represented by first-order decay processes.  An overall decay rate is
specified for the model; the model cannot explicitly consider the separate effects of multiple
degradation processes such as oxidation, hydrolysis, and biodegradation.  The user must
determine the overall, effective decay rate when multiple decay processes are to be represented. 
EPACMTP also has the capability of determining the overall decay rate from chemical-specific
hydrolysis constants using soil and aquifer temperature and pH values.  EPACMTP assumes that
reaction stoichiometry is prescribed for scenarios involving chain decay reactions.  The speciation
factors are specified as constants by the user (see the “EPACMTP Background Document and
User’s Guide”, U.S. EPA, 1996a).  In reality, these coefficients may change as functions of
aquifer conditions (for example, temperature and pH), concentration levels of other chemical
components, or both.

3.3.2 Data Sources

Data were obtained from a nationwide survey of industrial non-hazardous WMU’s (landfills,
surface impoundments, waste piles, and land application units) (Westat, 1987) to characterize
WMUs and hydrogeologic characteristics at facilities nationwide.  Parameters and assumptions
used to estimate infiltration of leachate from each type of WMU are provided in the “EPACMTP
Background Document and User’s Guide” (U.S. EPA, 1996a).

3.3.3 Model Sensitivities to Input Parameters

Given the large number of EPACMTP input parameters (52) and the variability and wide ranges
of values for some input parameters, EPA’s objective in developing the two-tiered approach was
to focus on the most important or most sensitive input parameters (i.e., those parameters whose
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values would have the greatest impact on the output of EPACMTP).  Focusing on the most
sensitive parameters minimizes the amount of data required to perform an analysis while
maintaining the robustness of the analysis.

The most sensitive input parameters were identified by performing sensitivity analyses which
consisted of running EPACMTP with high and low values of each input parameters and looking at
the resultant difference in the output (the DAF).   Three separate sensitivity analyses were
conducted: 

1)  a deterministic analysis of high and low values of input parameters; 
2) a probabilistic analysis of high and low values of input parameters; and 
3) a probabilistic analysis of the linear and rank order correlation coefficients to determine

sensitivities of input parameters (Allison Geoscience Consultants, Inc., 1997b).

These three types of sensitivity analysis were performed and the combined results used to best
determine the list of most sensitive parameters.  As is described in the summary of each analysis,
subtleties in the model sensitivity for probabilistic runs might only become apparent in a
deterministic sensitivity analysis.  However, probabilistic sensitivity analysis were needed because
the modeling for Tier 1 and Tier 2 is probabilistic.  The two different probabilistic sensitivity
analyses were performed to provide independent confirmation of the sensitivity of input
parameters for probabilistic modeling analyses.

The list of 52 EPACMTP input parameters to evaluate in the sensitivity analyses was reduced to
28 by identifying the independent variables that directly affect the EPACMTP output (well
concentration).  The 24 parameters not evaluated are either parameters included in the model to
consider additional fate and transport phenomenon, but not used for the scenarios of interest to
this analysis, dependent variables, or fixed (constant) values.  Each of these parameters was not
evaluated because they are not used for this analysis or are held constant and therefore have no
impact on the model output. 

A deterministic sensitivity analysis described in the following section was performed to determine
the ranked sensitivity of each of these 28 parameters (Table 3-4).  



Guide for Industrial Waste Management: 
Ground-Water Modeling Technical Background Document April 13, 1999

35IWEM_TBD.wpd

Table 3-4 List of 28 EPACMTP Input Parameters Used in the Deterministic Sensitivity
Analysis.

Variable Code Name Median Value Units

Infiltration SINFIL 0.18 m/yr

Recharge RECH 0.168 m/yr

WMU area AREA 4.21 m  2

Depth of landfill DEPTH 2.6 m

Fraction of industrial waste in landfill FRAC 0.5 unitless

Density of industrial waste CTDENS 0.9 g/cm3

pH of ground water PH 6.8 unitless

Temperature of ground water TEMP 14.4 Co

Dissolved phase hydrolysis decay rate RLAM1 0.06 1/yr

Sorbed phase hydrolysis decay rate.  RLAM2 0.06 1/yr

Average particle diameter of aquifer material DIAM 0.025 cm

Unsaturated zone thickness (depth to water table) DSOIL 1.17 m

Residual water content of unsaturated zone WCR 0.07 unitless

Soil bulk density RHOB 1.65 g/cm3

Soil moisture parameter ALPH 0.0153 1/cm

Soil moisture parameter BETA 1.37 unitless

Unsaturated zone hydraulic conductivity SATK 0.091 cm/hr

Aquifer Thickness ZB 1.182 m

Hydraulic conductivity of aquifer XKX 3.2 m/yr

Ground-water hydraulic gradient GRAD m/m0.0057
Porosity POR 0.236 unitless

Longitudinal dispersivity of aquifer AL 7 m

Organic Carbon Partition Coefficient KOC 0.8 ml/g

Percent organic matter POM 0.8 ml/g

Fraction Organic Carbon FOC 0.00043 ml/g

Angle of well off plume centerline ANGL 45 degrees

Radial distance to downgradient well RADIS 427 m

Depth of well intake point (fraction of aquifer ZWELL 0.5 unitless
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Deterministic Sensitivity Analysis

Deterministic sensitivity analyses of the EPACMTP evaluated the effects of changes in single
values of input parameters on a single output value. The deterministic sensitivity analysis
evaluated the impact on predicted ground-water well concentration as a function of changing each
parameter from it’s 10  to 90  percentile value while holding other parameters at their 50th th th

percentile values.

The advantage of the deterministic sensitivity analysis is that it allowed the isolation of sensitive
parameters that might be masked in Monte Carlo runs and might not reveal how sensitivities are
dependent upon values of other parameters (e.g., whether or not contaminant degradation is
considered, as described above).  The disadvantage of the deterministic sensitivity analysis is that
it might not reveal sensitivities or interdependencies that are representative of the probabilistic
modeling required to evaluate industrial waste management scenarios.  

For example, the deterministic analysis of longitudinal hydraulic conductivity of the saturated
zone (XKX) indicated that it was not a sensitive parameter.  However, closer examination reveals
that at low values of XKX, the contaminant travels so slow that it does not reach the ground-
water well, resulting in a low C .  At high values of XKX, the contaminant is transported rapidlyMW

but is highly diluted, also resulting in a low concentration C .  The highest C  values areMW MW

actually reached at median values of XKX.  Therefore, due to the design of the deterministic
sensitivity analysis, XKX was not determined to be a sensitive parameter (i.e., there was an
insignificant difference in the output for high and low values of XKX).  However, based on other
modeling analyses and knowledge of the importance of advection in groundwater flow and
transport, hydraulic conductivity is generally recognized as a sensitive parameter.

The results of the deterministic sensitivity analysis identified a ranking of parameters in terms of
model sensitivity.  Those parameters that ranked on the bottom list were evaluated and
determined to be parameters that generally are not sensitive for the modeling scenarios considered
for the two-tiered analysis.  Those parameters that are not sensitive for the scenarios of interest to
the two-tiered approach are:

C FRAC - the fraction of the waste of concern in the landfill;
C DEPTH - the depth of the landfill;
C CTDENS - the density of the waste of concern in the landfill;
C pH - pH of the ground water;
C TEMP - ground-water temperature;
C RECH - aquifer recharge rate; and
C RLAM2 - a secondary parameter used to express first-order decay.
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Probabilistic Sensitivity Analyses

The intent of the Guidance is to incorporate the probabilistic aspect of EPACMTP while focusing
on those parameters that have the greatest impact on the model results. Therefore, probabilistic
sensitivity analyses also were performed to identify sensitive parameters when EPACMTP is run
in Monte Carlo mode. The probabilistic sensitivity analysis evaluated the effects of changes in one
input parameter and holding that parameter at one value while using Monte Carlo values for the
remaining parameters for thousands of iterations per simulation.  The probabilistic sensitivity
analysis determined the effect of changes in a single input parameter value on the statistical
distribution of output ground-water well concentrations.  For the purposes of the Guide for
Industrial Waste Management, which evaluates the 90  percentile output of EPACMTP, theth

probabilistic sensitivity analyses evaluated the effects of changes in one parameter on the 90th

percentile ground-water well concentrations.  

The sensitivity of EPACMTP to key input parameters for probabilistic simulations was evaluated
to identify sensitive parameters with which to develop a neural network.  Monte Carlo simulations
were performed for the four types of WMUs: landfills, surface impoundments, waste piles, and
land application units.  As a result of the large amount of time required to perform a probabilistic
sensitivity analysis on each of the 28 parameters for each of the four WMUs, the analysis focused
on a subset of the parameters identified as the most sensitive in the deterministic sensitivity
analysis: 

C Source Specific parameters
S area of disposal unit (AREA);
S infiltration rate from disposal unit (SINFIL);

C Chemical-specific properties
S hydrolysis rate (RLAM1);

C Unsaturated zone properties 
S thickness of unsaturated zone (DSOIL);

C Aquifer properties 
S longitudinal hydraulic conductivity (XKX);
S hydraulic gradient (GRAD);
S aquifer thickness (ZB);

C Ground-water well location 
S radial distance of the observation well from center of downstream edge of waste

disposal unit (RADIUS); and
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S angle off-center of observation well measured counterclockwise (ANGLE).  
The method used to perform probabilistic sensitivity analyses involved performing Monte Carlo
(probabilistic) simulations to compute the “relative difference” between the output for a low input
parameter value and the output for a high input parameter value.  To examine the sensitivity of
one parameter, one series of probabilistic simulations was performed to determine the “base case”
(all input parameter values selected via Monte Carlo procedure) EPACMTP output value. 
Another series of probabilistic simulations was performed to determine the output value for a
“low” (10  percentile) input value of each parameter.  A third series of probabilistic simulationsth

was performed to determine the output value for a “high” (90  percentile) input value of eachth

parameter.

The sensitivity of some of the EPACMTP input parameters is dependent upon the values of other
parameters.  For example, if the angle of the ground-water well off the plume centerline is held at
a high value (e.g., 90 ), the ground-water well will more likely be located outside of theo

contaminant plume.  Therefore, the concentration in the ground water will likely be zero
regardless of changes in values of any other parameters.  The sensitivity of parameters also is
dependent on whether or not contaminant degradation (sorption/hydrolysis) is considered.  For
example, if adsorption and hydrolysis are not considered, changes in the depth of the unsaturated
zone (and other contaminant degradation-related parameters) will have no effect on the ground-
water well concentrations.

The results of the ranked probabilistic sensitivity analysis are shown in Tables 3-5 and 3-6.  The
ranked order of the most sensitive parameters reflect both the spread in the input distribution of
each parameter and the intrinsic sensitivity of that parameter.  In other words, input parameters
with a high degree of variation between their low and high values will tend to show a higher
sensitivity than parameters with a low degree of variation.  WMU area consistently shows a high
ranking, because it has a wide frequency distribution and because changes in the source area will
directly affect the predicted ground-water well concentration.

Additional observations from the sensitivity analysis are summarized as follows.

C As a general trend for the four types of management units, the ground-water well
location (ANGLE and RADIS) and the source area (AREA) most strongly influence
the results.  The rate of water infiltration through the source (SINFIL) is among the
most sensitive parameters for landfills and land application units, while it is less so
for surface impoundments and waste piles.  For surface impoundments, the rate of leakage
from the waste unit is controlled primarily by the operating depth of the impoundment
(HZERO) and the permeability and thickness of an impending layer at the base of the
impoundment, but natural precipitation has little impact.  
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Table 3-5 Ranked Sensitivity of Parameters Evaluated in Probabilistic Sensitivity
Analysis for (a) Landfills, (b) Surface Impoundments.

(a) Landfills

Decay Rate (λ) = 0 yr Rank yr Rank Decay Rate (λ) = 0.1 yr Rank-1
Sensitivity Decay Rate (λ) = 0.01 Sensitivity Sensitivity

-1 -1

Area 6.85 Area 8.07 Area 22.80

Infiltration 3.62 Infiltration 4.02 Infiltration 8.79

Radial Distance to Well 3.20 3.59 7.43Angle of Well off of Angle of Well off of Plume
Plume Centerline Centerline

Angle of Well off of Plume
Centerline 3.19 Radial Distance to Well 3.54 Radial Distance to Well 7.07

Hydraulic Conductivity 1.69 Aquifer Thickness 1.47 Aquifer Thickness 2.78

Hydraulic Gradient 1.22 Hydraulic Conductivity 1.39 Depth of Unsaturated Zone 2.67

Aquifer Thickness 1.17 Hydraulic Gradient 1.05 Hydraulic Conductivity 0.94

Depth of Unsaturated Zone 0.01 0.61 Hydraulic Gradient 0.24Depth of Unsaturated
Zone

Depth of Landfill 0.01 Depth of Landfill 0.61 Depth of Landfill 0.00

(b) Surface Impoundments

Decay Rate (λ) = 0 yr Decay Rate (λ) = Decay Rate (λ) = 0.1 yr-1 Sensitivity Sensitivity Sensitivity
Rank Rank Rank0.01 yr-1

-1

Angle of Well off of Plume Angle of Well off of
Centerline Plume Centerline6.61 7.84 Radial Distance to Well 20.19

Radial Distance to Well 6.30 Radial Distance to Well 7.75 15.94Angle of Well off of Plume
Centerline

Area 5.89 Area 7.17 Area 12.64

Hydraulic Conductivity 2.48 Aquifer Thickness 2.84 Ponding Depth 5.93

Aquifer Thickness 2.47 Ponding Depth 2.79 Aquifer Thickness 5.37

Ponding Depth 2.34 Hydraulic Conductivity 2.20 Depth of Unsaturated Zone 4.09

Hydraulic Gradient 2.01 Infiltration 2.14 Infiltration 4.05

Infiltration 1.93  Hydraulic Gradient 1.32 Hydraulic Conductivity 1.30

Depth of unsaturated zone 0.47 0.88 Hydraulic Gradient 0.24Depth of unsaturated
zone
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Table 3-6 Ranked Sensitivity of Parameters Evaluated in Probabilistic Sensitivity
Analysis for (a) Waste Piles, and (b) Land Application Units.

(a) Waste Piles

Decay Rate (λ) = 0 yr Rank yr Rank Decay Rate (λ) = 0.1 yr Rank-1
Sensitivity Decay Rate (λ) = 0.01 Sensitivity Sensitivity

-1 -1

Angle of Well off of Plume Angle of Well off of Angle of Well off of Plume
Centerline Plume Centerline Centerline34.2 32.7 5.46

Area 27.3 Area 25.5 Radial Distance to Well 5.27

Radial Distance to Well 23.0 Radial Distance to Well 24.0 Area 4.17

Hydraulic Conductivity 6.09 Aquifer Thickness 4.89 Aquifer Thickness 1.34

Aquifer Thickness 4.85 Hydraulic Conductivity 4.79 Infiltration 0.42

Hydraulic Gradient 2.82 Infiltration 1.88 Depth of unsaturated zone 0.30

Infiltration 1.86 Hydraulic Gradient 1.87 Hydraulic Conductivity 0.30

Depth of unsaturated zone 0.40 0.8 Hydraulic Gradient 0.12Depth of unsaturated
zone

(b) Land Application Units
Decay Rate (λ) = 0 yr Decay Rate (λ) = 0.1 yr-1 Sensitivity Sensitivity Sensitivity

Rank Rank Rank
Decay Rate (λ) = 0.01

yr-1
-1

Area 2.55 Area 3.38 Infiltration 11.6

Radial Distance to Well 2.37 Radial Distance to Well 2.92 Area 8.39

Infiltration 1.78 Infiltration 2.75 Radial Distance to Well 7.82

Aquifer Thickness 1.49 Aquifer Thickness 1.88 6.00Angle of well off of plume
centerline

Hydraulic Conductivity 1.18 1.21 Depth of unsaturated zone 5.26Depth of unsaturated
zone 

Hydraulic Gradient 0.68 Hydraulic Conductivity 1.05 Aquifer Thickness 2.54

Angle of well off of plume Angle of well off of
centerline plume centerline Hydraulic Conductivity0.58 0.97 1.38

Depth of unsaturated zone 0.42  Hydraulic Gradient 0.40 Hydraulic Gradient 0.03
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C The relative ranking of the four most sensitive parameters (ANGLE, RADIUS, AREA,
AND SINFIL) is not the same for all four types of WMUs because the source specific
parameters (AREA and SINFIL) have different ranges of values for each of the different
WMUs.  For example, 50  percentile values of area for the four WMUs are: th

landfills 18,500 m2

surface impoundments  2,685 m  2

waste piles      405 m2

land application units 80,900 m2

• Model results are highly sensitive to the location of the ground-water well, because the
choice of the well location affects the concentration that will be measured at that location. 
Additionally, the ground-water well location increases in importance as the contaminant
degradation (i.e., sorption and/or hydrolysis) rate increases.  For example, as the
hydrolysis rate increases, well location becomes even more critical because the
contaminant will hydrolyze and will not travel as far as a conservative (non-hydrolyzing)
contaminant.

• As the hydrolysis rate increases, the thickness of the unsaturated zone (DSOIL) and
aquifer thickness (ZB) increase in importance, and the hydraulic conductivity (XKX) and
gradient (GRAD) decrease in importance.

• For hydrolyzing constituents, the contaminant concentration reaching the ground-water
well is highly dependent on the travel time (in both the unsaturated zone and the aquifer). 
The travel time, in turn, is controlled by the total travel distance (through the unsaturated
and saturated zones) and the travel velocity. Thus the unsaturated zone thickness (DSOIL)
and aquifer thickness (ZB) increase in relative importance to other parameters as
hydrolysis rate increases.  

• The travel velocity in the saturated zone is a function of the aquifer hydraulic conductivity
(XKX) and hydraulic gradient (GRAD).  It may, therefore, seem inconsistent that the
sensitivity of these two parameters would decrease at higher hydrolysis rates.  This
apparent inconsistency highlights the fact that very complex interactions in the subsurface
environment control the ground-water well concentration.

• The effect of increasing ground-water flow rate (by increasing either the hydraulic
conductivity or the hydraulic gradient) results in a shorter travel time, and in the case of
degraders,  higher ground-water well concentrations.  On the other hand, an increased
ground-water flow rate also will cause a greater degree of dilution and dispersion of the
contaminant, which will tend to lower the ground-water well concentration.  The effects
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of dilution will be more important for non-degrading constituents, whereas the effects of
shorter travel time will become more important for hydrolyzing constituents.

An independent review conducted by Allison Geoscience Consultants (Allison Geoscience
Consultants, 1997b) of the probabilistic sensitivity analysis was performed for EPA OSW.  This
review reached the following conclusions:

• the sensitivity analysis met the objective of identifying the most important parameters in
determining EPACMTP model output.

• an independent sensitivity analysis using a method that relied on linear and rank order
correlation coefficients to estimate the performance in determining all of the model
responses in a Monte Carlo simulation indicated that this method of ranking model input
parameters yielded results similar to the probabilistic ranked difference method.   The
linear correlation coefficient results identify approximately the same parameters as being
most important, although the relative importance is somewhat different.

• Spearman rank order sensitivity analysis results, which are probably a more appropriate
ranking because of the non-linear relation between many of the input parameters and the
model response also indicated similar parameters as being most important.  The exception
is the appearance of aquifer dispersivity in the ranking, which is not a parameter that is
commonly known and will not be requested of the user.

• the similarities in both rank order analyses confirmed the results of the probabilistic
differences method used to identify the most sensitive parameters.

Based on the combined results of each of the three sensitivity analyses, the Agency developed a
list of the twelve most sensitive EPACMTP parameters for the industrial waste management
scenarios considered for the Tier 2 analyses (Table 3-7).  These twelve parameters were selected
to develop the neural networks for each WMU (see Section 5) for the Tier 2 analysis.  As will be
described in Section 5, initial attempts to train on all twelve parameters were unsuccessful. 
However, accurate neural networks were developed using 6-7 EPACMTP input parameters as is
described in Section 5.1
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Table 3-7 Most Sensitive EPACMTP Input Parameters Based on the Combined Results
of Deterministic and Probabilistic Sensitivity Analyses

Parameter Group EPACMTP Input Parameter

Source Parameters area (AREA)

infiltration (SINFIL)

ponding depth for surface impoundments
(HZERO)

Chemical-Specific Parameters hydrolysis rate (RLAM1)

organic carbon partition coefficient (KOC)

Unsaturated Zone Parameters unsaturated zone thickness (DSOIL) -
sensitive only for hydrolyzing and adsorbing
chemicals

percent organic matter in the unsaturated zone
(POM)

Saturated Zone Parameters aquifer thickness (ZB)

hydraulic conductivity of saturated zone
(XKX)

fraction organic carbon in the saturated zone
(FOC)

hydraulic gradient (GRADNT)

Well Parameters distance to well (RADIS)

angle of well off the contaminant plume
centerline
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4.0 CALCULATION OF THE TIER 1 LEACHATE CONCENTRATION
THRESHOLD VALUE (LCTVs)

This section describes the method used to compute the Tier 1 National Evaluation LCTVs,
including the assumptions and EPACMTP input parameters used (Section 4.1), the calculation of
DAFs that are used to develop Tier 1 LCTVs (Section 4.2),  and the determination of Tier 1
LCTVs (Section 4.3).  EPACMTP was run using nationwide distributions of input parameters and
some conservative assumptions to determine the 90  percentile DAF for each chemical on the listth

of Industrial Waste chemicals of concern.  This section includes a description of the assumptions
and input parameters used to compute Tier 1 LCTVs.

4.1 Assumptions and Parameters

Many of the assumptions used in other Agency applications of EPACMTP were used to develop
Tier 1 LCTVs, including the nationwide empirical data used to characterize WMUs and the
saturated and unsaturated zones at waste management facilities (U.S. EPA, 1987).  The reader is
referred back to Section 3.3 of this document for an overview of the modeling assumptions and to
previously developed background documents for EPACMTP (U.S. EPA, 1996a, 1996b, and
1996c) for additional details on the development and application of EPACMTP.  Additional
modeling assumptions that are similar to other EPA applications include:

• The time period during which contaminant migration was modeled was 10,000 years. 

• The leachate pulse duration for landfills was modeled as a finite-source controlled by the
ratio between initial contaminant mass in the landfill and the annual mass removed by
leaching.

• In the case of surface impoundments, waste piles and land application units, the leachate
pulse duration has taken to be the same as the unit’s operating life, as follows:

S Surface impoundment:  20 years
S Waste pile:  20 years
S Land application unit: 40 years

It was assumed that any waste remaining at the time the units are closed, is either removed
or has negligible additional contribution to leaching.

• Rather than running EPACMTP for 2,000 simulations for each of 175 organic chemicals,
EPACMTP was run for a selected number of values of hydrolysis rate (?) and retardation
factor (R).  Then for chemicals whose ? and R fell in between these values, an
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interpolation procedure was used to determine the constituent’s DAF.  This technique
reduced the computational effort required wile maintaining the desired accuracy.

• A separate series of simulations were performed for each of the non-linear metals, given
the required difference in the modeling methodology used to model the monitoring well
concentration of metals as a function of its leachate concentration.

The major differences between other previous EPA applications of EPACMTP and the
assumptions used for the Tier 1 analyses are: 1) in addition to computing infiltration for the no-
liner scenario for all four WMUs, infiltration from the WMU was computed for single-liner and
composite-liner scenarios for landfills, waste piles, and surface impoundments and 2) rather than
allowing the monitoring wells to be located within plus or minus 90E of the plume centerline, the
monitoring wells were located 150 m downgradient on the plume centerline.  These assumptions
were based on agreements reached by the Association of State and Territorial Solid Waste
Management Officials (ASTSWMO) Steering Committee, consisting of representatives from the
states and EPA.  The details of the differences in these assumptions are discussed in the following
sections.

Assumptions Used to Calculate Infiltration Rates

The Tier 1 analyses are designed to allow a user to select the most appropriate type of WMU liner
from three liner scenarios for landfills, surface impoundments, and waste piles (land application
units consider only the no-liner scenario).  The assumptions used to compute infiltration rates for
each of the three liner scenarios for all four WMUs are summarized in Tables 4-1 through 4-4.

Infiltration rates were computed with the HELP model (see Section 3.1) for two liner scenarios:
the no-liner scenario, consisting of a WMU that is developed on underlying native soils and the
single-liner scenario, consisting of a single two-foot thick clay liner (refer back to Figure 2-2). 
Infiltration rates for the composite-liner scenario, consisting of a clay liner with a flexible
membrane liner (FML) on top of the clay layer were computed using a liner leakage equation
developed by Bonaparte et al (1989) to estimate leakage through pinholes in a geomembrane for
good contact conditions: 

where: Q  = rate of leakage through a circular hole in the geomembrane component of
the composite liner (m /s)3

a  = geomembrane hole area (m )2

h  = head of liquid on top of the geomembrane (m)W
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k = hydraulic conductivity of the low-permeability soil component of the S 

composite liner (m/s)

The specific assumption regarding hole size and frequency of holes are listed in Tables 4-1
through 4-3.  Further details of the liner leakage modeling are provided in Appendix B.

Ground-Water Well Assumptions

Two parameters used to determine the location of the downgradient ground-water monitoring
well were set to constant values to approximate a conservative scenario for well location.  The
downgradient distance to the well was set to a constant value of 150 m from the boundary of the
WMU and the angle of the monitoring well off of the leachate plume centerline was set to 0o

(Figure 4-1).  Each state reserves the final authority on the location of ground-water wells. 
However, for the national Tier 1 evaluation, the location was set to a conservative distance of
150m.

4.2 Determination of Dilution Attenuation Factors (DAFs)

To calculate the Tier I LCTVs, the EPACMTP model is run for 2,000 iterations (2,000 sets of
random selections of parameter values) for each chemical.  The output of each simulation, the
ground-water concentration is converted to a DAF and the 2,000 values are ranked from highest
to lowest to form a cumulative probability density function (PDF).  The 90  percentile lowestth

DAF is selected from this PDF (Figure 4-2).  
DAFs were determined for all chemicals except for those metals that exhibit non-linear sorption 
(see Section 3.2).  As is described in Section 3.2, the ground-water well concentrations of the
non-linear metals is dependent upon the initial concentration of metals (leachate concentration)
and the total concentration of metal in the subsurface.  A DAF is not calculated for non-linear
metals, per se.  A back calculation is performed to determine the initial leachate concentration for
which 90% of the simulations results in a ground-water well concentration that does not exceed
the toxicity reference level (MCL or HBN).  This is the equivalent of computing a 90  percentileth

DAF.  

4.3 Calculation of Leachate Concentration Threshold Values (LCTVs)

To develop liner-specific LCTVs for the chemicals of concern, the DAF is multiplied either by the
maximum contaminant (MCL), or the health-based number (HBN).  For chemicals with hydrolysis
daughter products the MCL or HBN of the most toxic daughter compound (the lowest MCL or
HBN) is used to compute the LCTV.
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Table 4-1   Assumptions Used to Compute Infiltration for Landfills

No Liner Single Liner Composite Liner

Method HELP model simulations to HELP model simulations Bonaparte et al (1989)  Liner
compute an empirical to compute an empirical Leakage Equation (See Appendix
distribution of infiltration rates distribution of infiltration B).
for a 2 ft. thick cover of three rates through a single clay
native soil types for 97 liner for 97 nationwide
nationwide climate stations climate stations
represented by 30 climate represented by 25 climate
classes. Infiltration rates for a classes. Infiltration rates
specific site were obtained by for a specific site were
using the infiltration rate for obtained by using the
the nearest climate station. infiltration rate for the

nearest climate station.

Final Monte Carlo selection from 3 ft thick clay cover with a No cover modeled.  DAFs for
Cover distribution of soil types.  hydraulic conductivity of composite liner are already high

2 ft thick native soil (1 of 3 soil 1x10  cm/sec and a 10 ft with a liner only and the
types: silty clay loam, silt thick waste layer.  On top geomembrane is limiting factor
loam, and sandy loam) with a of the cover, a 1 ft layer of in determining infiltration.
range of mean hydraulic loam to support vegetation
conductivities (4.7x10  cm/s to and a 1 ft drainage layer.-6

6.4x10  cm/s).-4

-7

Liner Assumes no liner beneath 3 ft thick clay liner with a 3 ft thick clay liner with a
Design waste. hydraulic conductivity of hydraulic conductivity of 1x10

1x10  cm/sec.  Assumes cm/sec, 1 ft hydraulic head, -7

constant infiltration rate 40 mil HDPE FML
(assumes no increase in geomembrane w/ small holes
hydraulic conductivity of (0.005 in ), one hole per acre,
liner) over modeling “good” field conditions, and
period. good contact between the liner

-7

2

and soil.  Assumes same
infiltration rate  (i.e., no increase
in hydraulic conductivity of
liner) over modeling period.

Infiltration Monte Carlo selection from an Monte Carlo selection Constant value: 
Rate empirical  distribution of from an empirical     3.41x10  m/yr

values: distribution of values:
   min=1x10  m/yr    min=0.0 m/yr-5

   med=0.13 m/yr    med=0.043 m/yr
   max=1.08 m/yr    max=0.053 m/yr

-5
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Table 4-2   Assumptions Used to Compute Infiltration for Surface Impoundments

No Liner Single Liner  Composite Liner

Method Darcy’s Equation for Darcy’s Equation for Bonaparte et al (1989) Liner
infiltration through a infiltration through a single Leakage Equation (See
single sludge/native soil clay liner with a Monte Carlo Appendix B).
layer with a Monte Carlo selection of ponding depth
selection of ponding depth from the nationwide OPPI
from the nationwide OPPI survey of surface
survey of surface impoundments.
impoundments.

Ponding Based on Monte Carlo Based on Monte Carlo Assumes a 10 ft ponding depth.
Depth selection from nationwide selection from nationwide

distribution of ponding distribution of ponding
depths. depths.

 Liner 1  ft to 3 ft thick layer of 3 ft thick clay liner with a 3 ft thick clay liner with a
Design sludge/native soil in the hydraulic conductivity of hydraulic conductivity of 1x10

bottom of the 1x10  cm/sec.  No leachate cm/sec, 40 mil HDPE FML
impoundment.  Monte collection system. Single clay geomembrane w/ small holes
Carlo selection from liner. Assumes no increase in (0.005 in ), one hole per acre,
distribution of hydraulic hydraulic conductivity of liner “good” field conditions, and
conductivity values for this over modeling period.  Waste good contact between the liner
layer ranging from 1x10 is removed after 20 years and and soil.  Assumes constant-7

cm/s to 1x10 cm/s. Waste no final cover is installed. infiltration rate  (i.e., no-5

is removed after 20 years increase in hydraulic
and no final cover is conductivity of liner) over
installed. modeling period. Waste is

-7

-7

2

removed and no final cover is
installed. Geomembrane liner is
limiting factor that determines
infiltration rate.

Infiltration Calculated based on Calculated based on Monte Constant value: 
Rate Monte Carlo selection of Carlo selection of ponding     3.1x10  m/yr

ponding depth from an depth from an empirical
empirical  distribution of distribution of values.  The
values.  The resulting resulting distribution of
distribution of infiltration infiltration rates is:  
rates is: min= 6.83x10  m/yr,
min=1.8x10  m/yr, med=9.12x10  m/yr,  -2 

med=3.94 m/yr,  max= 1.46 m/yr.
max= 89.6 m/yr.

-3

-2

-4
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Table 4-3   Assumptions Used to Compute Infiltration for Waste Piles

No Liner Single Liner Composite Liner

Method HELP model simulations HELP model simulations to Bonaparte et al (1989) Liner
to compute distribution of compute distribution of Leakage Equation (See
infiltration rates for a 2 ft infiltration rates through a Appendix B).
thick layer of three native single clay liner for 97
soil types for 97 nationwide climate stations
nationwide climate represented by 25 climate
stations represented by 30 classes. Infiltration rates for a
climate classes. specific site were obtained by
Infiltration rates for a using the infiltration rate for the
specific site were obtained nearest climate station.
by using the infiltration
rate for the nearest climate
station.

Liner Design Assumes no liner. 3 ft thick clay liner with a 3 ft thick clay liner with a
Infiltration computed for hydraulic conductivity of 1x10 hydraulic conductivity of
three native soil types with cm/sec, no leachate collection 1x10  cm/sec, 1 ft hydraulic
hydraulic conductivity system, and a 10 ft thick waste head, 40 mil HDPE FML
similar to range of waste layer.  Assumes no increase in geomembrane w/ small holes
hydraulic conductivities hydraulic conductivity of liner (0.005 in ), one hole per acre, 
(4.7x10  cm/s to 6.4x10 over modeling period.  Assumes “good” field conditions,  and-6 -4

cm/s).  Assumes waste is waste is removed after 20 yrs good contact between the
removed after 20 yrs and and no final cover is installed. liner and soil.  Geomembrane
no final cover is installed. is limiting factor in

-7

-7

2

determining infiltration rate.
Assumes waste is removed
after 20 yrs and no final cover
is installed.

Infiltration Monte Carlo selection Monte Carlo selection from an Constant value: 
Rate from an empirical empirical distribution of values:     3.41x10  m/yr

distribution of values:    min=0.0 m/yr
   min=1x10  m/yr    med=0.126 m/yr-5

   med=0.17 m/yr    max=0.135 m/yr
   max=1.08 m/yr

-5
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Figure 4-1   Well Location Parameters Used in the Tier 1 Analysis.
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Figure 4-2 Cumulative Probability Density Functions of Ground-water Well
Concentrations and DAFs

The LCTV for any constituent is capped at 1,000 mg/L. Therefore, if the LCTV calculated based
on the DAF and the toxicity reference level is greater than 1,000 mg/L, the LCTV will be set to
1,000 mg/L.  The Agency invites comments on whether leachate from industrial WMUs are likely
to exceed 1,000 mg/L and if so, under what circumstances.

For the 39 constituents that determine whether a waste is characteristically toxic under 40 CFR
261.24 (U.S. EPA, 1990a), the LCTV is capped at the regulatory level for each constituent
(Table 4-4).  Any waste with leachate concentrations equal to or greater than the regulatory level
is a hazardous waste under the RCRA and state laws.
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Table 4-4   Toxicity Characteristic Regulatory Levels (U.S. EPA, 1990)

Chemical

Toxicity Characteristic
Regulatory Level

(mg/L)

Arsenic 5.0
Barium 100
Benzene 0.5
Cadmium 1.0
Carbon Tetrachloride 0.5
Chlordane 0.03
Chlorobenzene 100
Chloroform 6.0
Chromium 5.0
o-Cresol 200
m-Cresol 200
p-Cresol 200
Cresol 200
2,4-D 10.0
1,4-Dichlorobenzene 7.5
1,2-Dichloroethane 0.5
1,1-Dichloroethylene 0.7
2,4-Dinitrotoluene 0.13
Endrin 0.02
Heptachlor 0.008
Hexachlorobenze 0.13
Hexachloro-1,3-butadiene 0.5
Hexachloroethane 3.0
Lead 5.0
Lindane 0.4
Mercury 0.2
Methoxychlor 10.0
Methyl ethyl ketone 200.0
Nitorbenzene 2.0
Pentachlorophenol 100.0
Pyridine 5.0
Selenium 1.0
Silver 5.0
Tetrachloroethylene 0.7
Toxaphene 0.5
Trichloroethylene 0.5
2,4,5-Trichlorophenol 400
2,4,6-Trichlorophenol 2.0
2,4,5-TP Acid (Silvex) 1.0
Vinyl chloride 0.2
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5.0 DEVELOPMENT OF NEURAL NETWORKS FOR TIER 2 EVALUATION OF
THRESHOLD VALUES 

As stated in Section 1 of this document, to support the Tier 2 analysis, the Agency developed a
user-friendly tool that is midway between a Tier 1 analysis and a Tier 3 comprehensive site-
specific, data-intensive analysis.  The Agency evaluated methods to develop a simplified
approximation of a ground-water model that focuses on the most sensitive ground-water
modeling parameters, allows the user to evaluate the effects of some WMU- or location-specific
parameters, produces instantaneous results, and does not require a great deal of ground-water
modeling expertise to use.  During the course of its evaluation, the Agency determined that neural
networks (described in Section 2.3) can and have been successfully used in ground-water
modeling problems (Johnson and Rogers, 1995) and would be the most appropriate predictive
tool for the Tier 2 analysis.

This section describes how neural networks were used to develop a simplified tool that would
emulate the EPACMTP ground-water analysis of liner designs using a subset of the most sensitive
parameters and how they have been developed and applied to Tier 2 analysis of WMU liner
designs.  Section 5.1 describes how the key EPACMTP input parameters were selected for
training neural networks.  The assumptions and EPACMTP parameters included in the neural
network training are presented in section 5.2.  Section 5.3 describes the process of training the
neural networks and how they were developed.  Section 5.4 demonstrates how well the neural
networks predict EPACMTP modeling results and describes the uncertainty involved in the use of
the Tier 2 neural networks.  Finally, Section 5.5 describes how neural networks developed for
each of the four WMUs were integrated into one user-friendly Windows-based graphical user
interface (GUI).

5.1 Sensitivity Analysis to Identify Key Parameters

As explained in Section 2.3 of this document, neural networks are used to approximate processes
in the same manner as regression analysis, in which a number of independent parameters (inputs)
are used to predict values of one or more observed dependent parameters (outputs).  Therefore,
the first step in developing neural networks to approximate EPACMTP was to determine an
appropriate set of EPACMTP input parameters that would be used to predict the outcome of
EPACMTP, the concentration of a chemical in a downgradient ground-water well used for
drinking water and its inverse the DAF.

As was stated in Section 3.3.3, EPACMTP uses 52 input parameters to perform a ground-water
modeling simulation.  However, 24 of these parameters are either constant values, internally
derived from other parameters, or are inactive for the scenarios of interest to this analysis. 
Therefore, the desired number of parameters on which to train the neural networks was a subset
of the most sensitive of the remaining 28 parameters, preferably parameters that generally would
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• EPACMTP has 52 input parameters
• 24 parameters are constant,

dependent or not used
• Of the 28 remaining parameters, the

Agency identified the top 12 most
sensitive parameters for Industrial
solid waste modeling scenarios

• Of the top 12 parameters, 7 were
identified that represent the most
sensitive parameters that can be used
to develop a robust neural network.

be known with a high degree of certainty at a particular facility and would have the most impact
on the expected concentration of chemicals in a downgradient ground-water well.

To determine which parameters on which to
train the neural network, sensitivity analyses
evaluated the change in EPACMTP output,
the ground-water concentration, as a
function of changes in each of EPACMTP’s
input parameters for a landfill scenario (see
Section 3.3.3).  The deterministic and
probabilistic sensitivity analyses identified the
ten to twelve (depending on the WMU of
interest) parameters that were ranked as the
most sensitive parameters for the majority of
modeling scenarios for the two-tiered
approach (refer back to Table 3-7). 

Initially, the following 10 EPACMTP parameters were selected to develop neural networks:

• waste area,
• infiltration rate,
• chemical-specific organic carbon partition coefficient,
• chemical-specific decay rate,
• the product of the percent organic matter in the unsaturated zone times fraction organic

carbon in the saturated zone,
• the product of hydraulic conductivity (m/yr) and hydraulic gradient (m/m)
• depth to water table,
• aquifer thickness,
• angle of the monitoring well off of the plume centerline, and
• distance to the monitoring well.

Several attempts to develop neural networks with this number of parameters indicated that it was
possible to develop neural networks with a high coefficient of determination (R ).  However,2

because of the combined non-linearities in EPACMTP and complexities in the resulting output of
the EPACMTP (i.e., the response surface), the numbers predicted by the Tier 2 neural networks
were often inaccurate.  They would differ from the actual EPACMTP result by at least an order of
magnitude in many cases.  This was most likely a result of the wide variation in output values, up
to several orders of magnitude.   Therefore, an evaluation was performed to determine the
optimum number of EPACMTP input parameters that could be used to train neural networks with
the required accuracy. This evaluation indicated that seven EPACMTP input parameters could be
used to develop accurate neural networks for each of the four WMUs for the Tier 2 analyses:
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• waste area,
• infiltration rate,
• chemical-specific K  (for surface impoundments, waste piles, and land application units),OC

• chemical-specific decay rate,
• depth to water table,
• aquifer thickness, and
• distance to the monitoring well

The landfill modeling analyses for Tier 2 consider large waste volumes and assume an essentially
steady-state source scenario.  As a result, K  becomes an insensitive parameter (K  has noOC OC

effect on the well concentration under steady-state conditions).  Modeling the other three WMUs
considered each of the seven parameters listed.

5.2 Assumptions and Parameters Used to Develop Neural Networks

Once the most sensitive parameters were identified, the assumptions and the modeling scenarios
that would be considered in the Tier 2 analyses were delineated.  The modeling scenarios were
essentially similar to those used to develop the Tier 1 LCTVs (see Section 4.0).  EPA used the
neural network training software package NNModel version 3.2, to develop neural networks for
the Tier 2 evaluation.  Feed-forward, backpropagation neural networks with one hidden layer
were designed for this investigation.  The input layer consisted of six units for landfills and seven
units for the other three WMUs, with each unit representing each input parameter (area,
infiltration, K , decay rate, depth to water table).  The output layer consisted of the ground-OC

water well concentration which are then converted to a DAF.  See Figure 5-1 for a schematic
diagram of the neural network structure for surface impoundments, waste piles, and land
application units).  

The hidden layer initially consisted of one neuron, which is automatically incremented by the
neural network training software to a maximum of 35 hidden neurons.  Training was performed
for 10,000 to 20,000 iterations, and a conjugate gradient optimization, a method of adjusting the
weights, was performed to minimize the errors.  The neural network training software provided
summaries of the training statistics at the end of the training session.
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Figure 5-1  Diagram of Neural Network for EPACMTP Model (Parameters)
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The trained network was first tested by evaluating its performance against the training set, to see
how well it learned the training data matrix.  The network was then tested against data is had not
seen before, to evaluate its generalized performance.  The trained and tested neural network was
then converted into a simple computer code in the C programming language. This program was
then compiled into an executable file that can be run as a user-friendly stand-alone executable
program.

5.3 Neural Network Development

The results of EPACMTP simulations were collected in spreadsheets in one initial data matrix. 
To follow the network learning progress from the beginning of the training, a training data set was
coupled with a test data set.  Additional data sets were created parallel to the network training
and were appended to or replaced with the current training and/or test data set depending on
training requirements. The details of this process for the neural networks developed for each
WMU are described in Appendix A.

Each data set consisted of a series of EPACMTP input and output parameter values, with each
row consisting of a combination of input values and the resulting EPACMTP output values. A
column represents one input parameter, one row represented an input parameter combination, and
each cell contained an input parameter value. Input parameters with values varying over several
orders of magnitude (e.g. 10  percentile of  area=108, and the 90  percentile of area=40500)th th

were transformed to logarithmic values.   This conversion was made for the following inputs:
LAMBDA, KOC, AREA, and RADIUS.  The other input parameters (SINFIL, DSOIL, and ZB)
remained in their linear form. The values of the output parameters also varied over more than one
order of magnitude and were converted to logarithmic values.

Development of each of the four neural networks required the use of three software systems.  The
training and test data were produced with EPACMTP, the data matrices were collated into
spreadsheets, which were then imported into the neural network software package NNModel
version 3.2 (Neural Fusion, 1998).  Figure 5-2 gives an overview of this process.   EPACMTP
was run for 2000 iterations for each input file consisting of a unique combination of input values.
The model simulated the leaching from each WMU type and calculated the corresponding peak
and average 90  percentile monitoring well concentrations, which were then imported toth

spreadsheets.  The data sets in the spreadsheets were then imported into the neural network
software. Internal neural network training parameters including the training method, number of
training iterations, and the input parameter descriptors were defined and the neural network
training was started.  The process of training and testing the neural networks for each WMU is
described in detail in Appendix A.
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Figure 5-2  Overview of Neural Network Training Procedure

5.4 Neural Network Performance Evaluation

Following the iterative process of training and testing the neural networks for each WMU, their
predictive ability was evaluated through an independent validation test.  The final networks were
used to predict monitoring well concentrations and DAFs for a comprehensive set of input
parameters, which was generated independently from the data on which the networks were
trained.  The validation data sets were intended to resemble the site data that a user might enter
into the neural network model.  The validation data sets reflect values representative of real site
data and were randomly selected within the domain of values used to train the neural networks. 
The same data were also used as input to EPACMTP and the performance evaluation consisted of
comparing the neural network predictions to the actual EPACMTP results.

The results of the neural network validation are summarized graphically in Figures 5-3 through 5-
6.  These figures show the performance of the neural networks for each of the four WMUs.
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The performance of the neural networks is summarized in Table 5-7.  This table provides, for each
network, the number of training and testing data sets used, the number of data points in the final
validation test, and the linear correlation, expressed as the coefficient of determination (R ), for2

actual (EPACMTP) and predicted concentration values.

The validation results for the landfill neural network are shown in Figure 5-3.  The figure shows
the comparison of EPACMTP and neural network-generated peak monitoring well concentrations
for a total of 115 validation cases.  The monitoring well concentrations are shown on a
logarithmic scale.  The EPACMTP model simulations were all performed using an (arbitrary)
initial leachate concentration of 10  mg/L.  The highest monitoring well concentration obtained6

also approaches this same value, i.e., it corresponds to the case where the concentration in the
monitoring well is the same as the concentration in the leachate.  For this case, the DAF is equal
to 1.0.

For clarity in the presentation of results, the results are shown in ranked order, from the cases
with the lowest monitoring well concentration to the highest.  The figure demonstrates that the
neural network performs best in the high range of monitoring well concentrations (i.e., low
DAFS); the prediction of the neural network is poorest for those cases where the monitoring well
concentration was the lowest .

As will be discussed below, generally better neural network performance was obtained for the
other WMU neural networks which had gone through more extensive training/testing than the
landfill neural network.  Nevertheless, the landfill neural network met the criterion that the
coefficient of determination, R , should equal or exceed 0.9 for both the training data set and the2

validation data set (Table 5-7).  The relatively poorer prediction in cases of low monitoring well
concentration (high DAF) was deemed acceptable because these cases correspond to situations
where leachate from the waste unit will have relatively little impact on ground-water resources. 
Conversely, simulation cases of high monitoring well concentration correspond to situations
where the WMU leachate may have a significant ground-water impact, and accuracy of the neural
network is of greater concern.

Figure 5-4 depicts the validation results for surface impoundments.  The same trends in predictive
accuracy of the neural network as a function of monitoring well concentration that were observed
in the landfill case, are also evident here.  Interestingly, although the surface impoundment neural
network visually does an overall better prediction job than the landfill network, the R  value for2

the validation test, is actually somewhat lower (Table 5-7).  This may be attributed to the
presence of a number of poor predictions in a small number of cases in the low concentration
range.

Results for the waste pile and land application unit validation tests are shown in Figures 5-5 and
5-6, respectively.  In both cases, the neural network shows very good prediction accuracy, and 
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Figure 5-3 Comparison of EPACMTP Results and Neural Network Predictions of Peak
Monitoring Well Concentration for Landfills.

Figure 5-4 Comparison of EPACMTP Results and Neural Network Predictions of Peak
Monitoring Well Concentration for Surface Impoundments.
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Figure 5-5 Comparison of EPACMTP Results and Neural Network Predictions of Peak
Monitoring Well Concentration for Waste Piles.

Figure 5-6 Comparison of EPACMTP Results and Neural Network Predictions of Peak
Monitoring Well Concentration for Land Application Units.
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Table 5-1   Neural Network Summary Statistics

Parameter Landfill Impoundment Waste Pile Unit
Surface Application

Land

Number of training/testing data sets 712 2,747 4,668 4,870

Maximum number of hidden neurons 10 20 32 34

Maximum number of nn iterations 31,000 388,399 160,082 120,073

Training R  (log peak conc.) 0.992 0.992 0.995 0.9972

Number of validation data sets 115 253 291 138

Validation R  (log peak conc.) 0.902 0.825 0.978 0.9942
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correspondingly high R  values (Table 5-7).  It may also be noted from this table that the number2

of training/testing data sets for the waste pile and land application unit networks were significantly
greater than used for landfills and surface impoundments.  

Collectively, the validation tests show good predictive ability for all four networks, with R  values2

equal to, or greater than 0.992.  The comparison of landfill versus land application network
results also indicates the incremental gains in predictive ability that may be realized through
additional neural network training.  The trained neural networks seem to give good generalized
performance (i.e., they are able to predict the DAF to a high degree of accuracy for input values
on which they have not been trained). 

Uncertainty Assessment

Because the neural network is an approximation of EPACMTP, which is itself an approximation
of real-world systems, the DAF values predicted by the neural network are inevitably subject to
various sources of uncertainty.  It is difficult to quantify the impacts of the various sources of
uncertainty.  The selection of a conservatively chosen DAF (i.e., 90  percentile) is one way toth

reasonably ensure that the model predictions are appropriately protective in spite of uncertainty. 
A preliminary evaluation of the uncertainty associated with the neural network approximation of
EPACMTP was done and is described in the Draft Uncertainty/Sensitivity Analysis Background
Document (U.S. EPA, 1998).

Further investigation into the uncertainty associated with use of infiltration rates less than 0.001
m/yr revealed that constituents with a degradation rate or K  greater than zero gave monitoringOC

well concentrations of zero, and were insensitive to infiltration rate.  This suggests that the
response surface that the neural network is intended to simulate has a discontinuity in it where the
infiltration rates are low.  This affirmed the difficulties in training the networks using low
infiltration rates.

5.5 Integration of the Neural Networks into a Single User-Friendly GUI

Following the development of neural networks for each of the four waste management units, the
predictive coefficients and software that make up each neural network were incorporated into one
user-friendly Windows-based graphical user interface (GUI) that is used to perform both Tier 1
and Tier 2 analyses of WMU liner designs.  

To verify that the GUI was passing the correct parameter values and computing DAFs in the same
manner as each individual neural network was demonstrated to do, verification tests were
performed on the GUI using sample data sets of input and output for each of the four neural
networks.  The results indicated that the neural networks in the GUI performed as expected.



Guide for Industrial Waste Management: 
Ground-Water Modeling Technical Background Document April 13, 1999

64IWEM_TBD.wpd

6.0 APPLICATION OF MODEL RESULTS TO WASTE MANAGEMENT

The Tier 1 LCTV Look-Up tables discussed in Section 4.0 and the neural network approximation
of EPACMTP have both been linked to a Microsoft Windows™ -based graphical user interface. 
This user-friendly software package (IWEM) allows the user to enter chemical and facility
information and determine if a proposed WMU will be considered protective of ground water.  
The use and interpretation of the Tier 1 and Tier 2 evaluations are described in this section
(Sections 6.1 and 6.2, respectively).

6.1 Use and Interpretation of Tier 1 Evaluation

The potential impact that a WMU may have on ground-water resources is characterized by
comparing the estimated waste constituent leachate concentration (TCLP or other appropriate
leachate test method) to the calculated LCTV in the appropriate Look-Up Table.  The result of
this comparison determines the recommended liner system for the WMU or determines whether
land application of this waste is appropriate (i.e., the waste constituent concentrations will not
exceed health-based numbers at a down gradient ground-water well).  

For example, if the leachate concentrations for all constituents are lower than the corresponding
no-liner LCTVs, then no liner is recommended as being sufficiently protective of ground water.  If
any leachate concentration is higher than the corresponding no-liner LCTV, then a minimum of  a
single clay liner is recommended.  If any leachate concentration is higher than the corresponding
single-liner LCTV, then a minimum of a composite liner (an FML geomembrane overlain by a clay
liner) is recommended.  For waste streams with multiple constituents, the most protective liner
that is specified for any one constituent is the recommended liner design.

An electronic version of these look-up tables is included in the IWEM software as the National
Evaluation, and a printed copy of the tables are included in the Assessing Risk Section of the
Ground-Water Protection section of the Guidance (Tables 4.1 to 4.4).  

The IWEM software allows the user to enter the estimated leachate concentrations for waste
constituents and compares these leachate concentrations to the corresponding LCTVs to
recommend a liner design or determine whether land application is appropriate.  The Tier 1
National Evaluation does not require site-specific data, and the resulting design recommendations
are based solely on an evaluation of waste characteristics and national ground-water
characteristics.

If the user is not satisfied with the recommendations of the National Evaluation or if site-specific
conditions seem likely to support the use of a liner design different from the one recommended (or
suggest a different conclusion regarding the appropriateness of land application of a waste), then
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the user can proceed to the Location-Adjusted Evaluation (Tier 2) or conduct a site-specific
ground-water fate and transport analysis (Tier 3).

6.2 Use and Interpretation of Tier 2 Evaluation

The neural networks developed for Tier 2 have been incorporated into the Industrial Waste
Evaluation Model (IWEM) graphical user interface and are designed to provide the user flexibility
in evaluating WMU designs.  IWEM incorporates the neural networks for each of the four WMUs
and is designed to provide a user-friendly software tool that allows users to input location-specific
data for up to seven EPACMTP input parameters and quickly determine if a proposed WMU
design will be protective of human health and the environment.  

As with Tier 1, a list of chemicals commonly encountered in industrial waste is provided along
with necessary chemical-specific data such as decay rate and sorption coefficients, as well as
HBNS and/or MCLs.   IWEM also allows the user to enter  user-specified chemicals and required
chemical property data, including user-specified TRLs.  The user is requested to input location-
specific data, where available, and to document the source of these data.  If location-specific data
are not available the Tier 2 evaluation provides default values that are based on representative
nationwide data.  Upon entering the required data, the user is provided with recommendations
regarding whether or not a specific liner type for a WMU is protective based on the location-
specific data, the modeling results, and on the TRLs for the chemicals of concern. 

Similar to the Tier 1 analysis, the leachate concentration for each waste constituent is compared
with the LCTV determined by the neural networks.  If the user chooses to have the infiltration
rate estimated by the model, then the results are presented in terms of two types of liners: no liner
(in-situ soil) and single clay liner.  These results are calculated from both MCLs and HBNs.  If the
leachate concentrations for all constituents are lower than the no-liner LCTVs, then no liner is
recommended as being sufficiently protective of ground water.  If any leachate concentration is
higher than the no-liner LCTV, then at least a single clay liner is recommended.  For waste
streams with multiple constituents, the most protective liner that is specified for any one
constituent is the recommended liner design.

If the user has a measured or calculated value for infiltration rate, that value can be directly
entered as input for Tier 2.  In this case, the user’s expected leachate concentrations are compared
to the LCTV calculated for this scenario.  The modeling results are then presented to the user
detailing whether the given scenario is recommended as being sufficiently protective of the ground
water.  These results are calculated for both MCLs and HBNs.
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